
KokkACC: Enhancing Kokkos with OpenACC
BoF: OpenACC User Experience: Relevance, Hackathons, and Roadmaps

Pedro Valero-Lara, Computer Scientist,
Oak Ridge National Laboratory, valerolarap@ornl.gov
Seyong Lee, Marc Gonzalez-Tallada, Joel Denny, and Jeffrey S. Vetter

Kokkos Programing Model
• Memory management is composed by:

• Kokkos_malloc and Kokkos views

• Data parallel execution

• parallel_for, parallel_reduce and parallel_scan

• 3 different APIs

• Single Range, Multi-Dimensional Range and Hierarchical Parallelism

• Each Kokkos construct has:

• Number of iterations

• A C++ Lambda that acts like a function

11/11/2022SC22 | Dallas, TX | hpc accelerates. 2

KokkACC Implementation
• Single Range:

• Multi-dimensional Range:

• Hierarchical Parallelism

11/11/2022SC22 | Dallas, TX | hpc accelerates. 3

• Atomics

https://github.com/kokkos/kokkos/tree/develop/core/src/OpenACC

• Both models attempts to be
architecture agnostic

• Strong connection between
Kokkos front-end and OpenACC
specification

• All this makes easy the
implementation,
maintainability and
sustainability of the OpenACC
back end

Performance Evaluation on GPUs

• Mini-benchmarks

11/11/2022SC22 | Dallas, TX | hpc accelerates. 4

• LULESH

• MiniFE

• LAMMPS-SNAP

Performance Evaluation on CPUs
• Intel, AMD, and IBM CPUs

• Mini-benchmarks

11/11/2022SC22 | Dallas, TX | hpc accelerates. 5

Descriptive VS Prescriptive (Device Specific)

• Next, we highlight why it is possible to provide competitive or even better performance using a high-level
and high programming productivity descriptive (pragma-based) model (OpenACC) than using a low-level
prescriptive (device-specific) model (CUDA) for C++ Metaprogramming solutions (Kokkos).

• C++ Metaprogramming solutions, like Kokkos, relay on C++ lambdas. C++ lambdas are defined by
application programmers and can express any operation.

• Device-specific solutions like CUDA weren’t designed to work at lambda level originally. CUDA Kokkos
back-end relays on CUDA developers, who don’t know which operations will be computed by GPU
kernels, but they must take decisions about size of CUDA blocks, memory usage, synchronization, etc.
This makes the optimization of these solutions extremely difficult or even impossible.

• OpenACC backend relays on compiler, which can work at “lambda” level and take the best decisions
depending on the operations defined by C++ lambdas and application developers and increasing the
programming productivity

11/11/2022SC22 | Dallas, TX | hpc accelerates. 6

Conclusions and Future Work
• OpenACC vs CUDA (NVIDIA GPU):

• Competitive performance for Single Range.

• Better performance for Multi-Dimensional.

• Competitive performance for Hierarchical Parallelism parallel_for and worse performance for parallel_reduce.

• Competitive/better performance on mini-apps (LULESH, miniFE, LAMPS-SNAP).

• OpenACC vs OpenMP Target (NVIDIA GPU):

• Better performance in most of the cases tested.

• OpenACC vs OpenMP (Intel, AMD, and IBM CPUs):

• Similar performance on Intel, AMD and IBM except for AXPY (parallel_for) on IBM

• KokkACC is aligned with other important efforts:

• Analysis, codesign and development of the OpenACC capacity for C++.

• Enhancing C++ [for HPC] using the capacity of OpenACC.

• Design of new OpenACC capabilities.

• Future Efforts:

• Implement all Kokkos front-end features in OpenACC back end

• Explore novel optimizations

11/11/2022SC22 | Dallas, TX | hpc accelerates. 7

KokkACC: Enhancing Kokkos with OpenACC
BoF: OpenACC User Experience: Relevance, Hackathons, and Roadmaps

Pedro Valero-Lara, Computer Scientist,
Oak Ridge National Laboratory, valerolarap@ornl.gov
Seyong Lee, Marc Gonzalez-Tallada, Joel Denny, and Jeffrey S. Vetter

Thanks!
Questions??

