
The OpenACC®
1

Application Programming Interface2

Draft Specification - Technical Report 24-13

OpenACC Technical Committee4

November 20245

The OpenACC® API Version Technical Report 24-1

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,6

no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form7

or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express8

written permission of the authors.9

© 2011-2024 OpenACC-Standard.org. All rights reserved.10

2

The OpenACC® API Version Technical Report 24-1

Contents11

1. Introduction 912

1.1. Scope . 913

1.2. Execution Model . 914

1.3. Memory Model . 1115

1.4. Language Interoperability . 1316

1.5. Runtime Errors . 1317

1.6. Conventions used in this document . 1318

1.7. Organization of this document . 1419

1.8. References . 1520

1.9. Changes from Version 1.0 to 2.0 . 1621

1.10. Corrections in the August 2013 document . 1822

1.11. Changes from Version 2.0 to 2.5 . 1823

1.12. Changes from Version 2.5 to 2.6 . 1924

1.13. Changes from Version 2.6 to 2.7 . 2025

1.14. Changes from Version 2.7 to 3.0 . 2026

1.15. Changes from Version 3.0 to 3.1 . 2227

1.16. Changes from Version 3.1 to 3.2 . 2328

1.17. Changes from Version 3.2 to 3.3 . 2429

1.18. Changes from Version 3.3 to TR 24-1 . 2530

1.19. Topics Deferred For a Future Revision . 2631

2. Directives 2932

2.1. Directive Format . 2933

2.2. Conditional Compilation . 3034

2.3. Internal Control Variables . 3135

2.3.1. Modifying and Retrieving ICV Values . 3136

2.4. Device-Specific Clauses . 3137

2.5. Compute Constructs . 3338

2.5.1. Parallel Construct . 3339

2.5.2. Serial Construct . 3440

2.5.3. Kernels Construct . 3541

2.5.4. Compute Construct Restrictions . 3642

2.5.5. Compute Construct Errors . 3743

2.5.6. if clause . 3744

2.5.7. self clause . 3745

2.5.8. async clause . 3746

2.5.9. wait clause . 3747

2.5.10. num gangs clause . 3748

2.5.11. num workers clause . 3849

2.5.12. vector length clause . 3850

2.5.13. private clause . 3851

2.5.14. firstprivate clause . 3852

2.5.15. reduction clause . 3953

2.5.16. default clause . 4054

3

The OpenACC® API Version Technical Report 24-1

2.6. Data Environment . 4055

2.6.1. Variables with Predetermined Data Attributes 4056

2.6.2. Variables with Implicitly Determined Data Attributes 4157

2.6.3. Data Regions and Data Lifetimes . 4258

2.6.4. Data Structures with Pointers . 4359

2.6.5. Data Construct . 4360

2.6.6. Enter Data and Exit Data Directives . 4561

2.6.7. Reference Counters . 4762

2.6.8. Attachment Counter . 4763

2.7. Data Clauses . 4864

2.7.1. Data Specification in Data Clauses . 4865

2.7.2. Data Clause Actions . 5066

2.7.3. Data Clause Errors . 5267

2.7.4. Data Clause Modifiers . 5268

2.7.5. deviceptr clause . 5369

2.7.6. present clause . 5370

2.7.7. copy clause . 5471

2.7.8. copyin clause . 5572

2.7.9. copyout clause . 5673

2.7.10. create clause . 5774

2.7.11. no create clause . 5775

2.7.12. delete clause . 5876

2.7.13. attach clause . 5977

2.7.14. detach clause . 5978

2.8. Host Data Construct . 5979

2.8.1. use device clause . 6080

2.8.2. if clause . 6081

2.8.3. if present clause . 6182

2.9. Loop Construct . 6183

2.9.1. collapse clause . 6384

2.9.2. gang clause . 6485

2.9.3. worker clause . 6586

2.9.4. vector clause . 6587

2.9.5. seq clause . 6688

2.9.6. independent clause . 6689

2.9.7. auto clause . 6690

2.9.8. tile clause . 6691

2.9.9. device type clause . 6792

2.9.10. private clause . 6793

2.9.11. reduction clause . 6894

2.10. Cache Directive . 7295

2.11. Combined Constructs . 7296

2.12. Atomic Construct . 7497

2.13. Declare Directive . 7898

2.13.1. device resident clause . 7999

2.13.2. create clause . 80100

2.13.3. link clause . 81101

4

The OpenACC® API Version Technical Report 24-1

2.14. Executable Directives . 81102

2.14.1. Init Directive . 81103

2.14.2. Shutdown Directive . 82104

2.14.3. Set Directive . 84105

2.14.4. Update Directive . 85106

2.14.5. Wait Directive . 87107

2.14.6. Enter Data Directive . 87108

2.14.7. Exit Data Directive . 88109

2.15. Procedure Calls in Compute Regions . 88110

2.15.1. Routine Directive . 88111

2.15.2. Global Data Access . 95112

2.16. Asynchronous Behavior . 95113

2.16.1. async clause . 96114

2.16.2. wait clause . 97115

2.16.3. Wait Directive . 97116

2.17. Fortran Specific Behavior . 98117

2.17.1. Optional Arguments . 98118

2.17.2. Do Concurrent Construct . 99119

3. Runtime Library 101120

3.1. Runtime Library Definitions . 101121

3.2. Runtime Library Routines . 102122

3.2.1. acc get num devices . 102123

3.2.2. acc set device type . 102124

3.2.3. acc get device type . 103125

3.2.4. acc set device num . 104126

3.2.5. acc get device num . 104127

3.2.6. acc get property . 105128

3.2.7. acc init . 106129

3.2.8. acc shutdown . 106130

3.2.9. acc async test . 107131

3.2.10. acc wait . 108132

3.2.11. acc wait async . 109133

3.2.12. acc wait any . 111134

3.2.13. acc get default async . 111135

3.2.14. acc set default async . 112136

3.2.15. acc on device . 112137

3.2.16. acc malloc . 113138

3.2.17. acc free . 113139

3.2.18. acc copyin and acc create . 114140

3.2.19. acc copyout and acc delete . 116141

3.2.20. acc update device and acc update self . 118142

3.2.21. acc map data . 119143

3.2.22. acc unmap data . 120144

3.2.23. acc deviceptr . 121145

3.2.24. acc hostptr . 121146

3.2.25. acc is present . 122147

3.2.26. acc memcpy to device . 122148

5

The OpenACC® API Version Technical Report 24-1

3.2.27. acc memcpy from device . 123149

3.2.28. acc memcpy device . 125150

3.2.29. acc attach and acc detach . 126151

3.2.30. acc memcpy d2d . 127152

4. Environment Variables 131153

4.1. ACC DEVICE TYPE . 131154

4.2. ACC DEVICE NUM . 131155

4.3. ACC PROFLIB . 131156

5. Profiling and Error Callback Interface 133157

5.1. Events . 133158

5.1.1. Runtime Initialization and Shutdown . 134159

5.1.2. Device Initialization and Shutdown . 134160

5.1.3. Enter Data and Exit Data . 135161

5.1.4. Data Allocation . 135162

5.1.5. Data Construct . 136163

5.1.6. Update Directive . 136164

5.1.7. Compute Construct . 136165

5.1.8. Enqueue Kernel Launch . 137166

5.1.9. Enqueue Data Update (Upload and Download) 137167

5.1.10. Wait . 137168

5.1.11. Error Event . 138169

5.2. Callbacks Signature . 138170

5.2.1. First Argument: General Information . 139171

5.2.2. Second Argument: Event-Specific Information 140172

5.2.3. Third Argument: API-Specific Information 145173

5.3. Loading the Library . 146174

5.3.1. Library Registration . 147175

5.3.2. Statically-Linked Library Initialization 148176

5.3.3. Runtime Dynamic Library Loading . 148177

5.3.4. Preloading with LD PRELOAD . 149178

5.3.5. Application-Controlled Initialization . 150179

5.4. Registering Event Callbacks . 150180

5.4.1. Event Registration and Unregistration . 150181

5.4.2. Disabling and Enabling Callbacks . 152182

5.5. Advanced Topics . 153183

5.5.1. Dynamic Behavior . 153184

5.5.2. OpenACC Events During Event Processing 154185

5.5.3. Multiple Host Threads . 155186

6. Glossary 157187

A. Recommendations for Implementers 163188

A.1. Target Devices . 163189

A.1.1. NVIDIA GPU Targets . 163190

A.1.2. AMD GPU Targets . 163191

A.1.3. Multicore Host CPU Target . 164192

6

The OpenACC® API Version Technical Report 24-1

A.2. API Routines for Target Platforms . 164193

A.2.1. NVIDIA CUDA Platform . 164194

A.2.2. OpenCL Target Platform . 165195

A.3. Recommended Options and Diagnostics . 166196

A.3.1. C Pointer in Present clause . 166197

A.3.2. Nonconforming Applications and Implementations 167198

A.3.3. Automatic Data Attributes . 167199

A.3.4. Routine Directive with a Name . 167200

Index 169201

7

The OpenACC® API Version Technical Report 24-1

8

The OpenACC® API Version Technical Report 24-1 1.1. Scope

1. Introduction202

This document describes the compiler directives, library routines, and environment variables that203

collectively define the OpenACC™ Application Programming Interface (OpenACC API) for writ-204

ing parallel programs in C, C++, and Fortran that run identified regions in parallel on multicore205

CPUs or attached accelerators. The method described provides a model for parallel programming206

that is portable across operating systems and various types of multicore CPUs and accelerators. The207

directives extend the ISO/ANSI standard C, C++, and Fortran base languages in a way that allows208

a programmer to migrate applications incrementally to parallel multicore and accelerator targets209

using standards-based C, C++, or Fortran.210

The directives and programming model defined in this document allow programmers to create appli-211

cations capable of using accelerators without the need to explicitly manage data or program transfers212

between a host and accelerator or to initiate accelerator startup and shutdown. Rather, these details213

are implicit in the programming model and are managed by the OpenACC API-enabled compilers214

and runtime environments. The programming model allows the programmer to augment informa-215

tion available to the compilers, including specification of data local to an accelerator, guidance on216

mapping of loops for parallel execution, and similar performance-related details.217

1.1 Scope218

This OpenACC API document covers only user-directed parallel and accelerator programming,219

where the user specifies the regions of a program to be targeted for parallel execution. The remainder220

of the program will be executed sequentially on the host. This document does not describe features221

or limitations of the host programming environment as a whole; it is limited to specification of loops222

and regions of code to be executed in parallel on a multicore CPU or an accelerator.223

This document does not describe automatic detection of parallel regions or automatic offloading224

of regions of code to an accelerator by a compiler or other tool. This document does not describe225

splitting loops or code regions across multiple accelerators attached to a single host. While future226

compilers may allow for automatic parallelization or automatic offloading, or parallelizing across227

multiple accelerators of the same type, or across multiple accelerators of different types, these pos-228

sibilities are not addressed in this document.229

1.2 Execution Model230

The execution model targeted by OpenACC API-enabled implementations is host-directed execu-231

tion with an attached parallel accelerator, such as a GPU, or a multicore host with a host thread that232

initiates parallel execution on the multiple cores, thus treating the multicore CPU itself as a device.233

Much of a user application executes on a host thread. Compute intensive regions are offloaded to an234

accelerator or executed on the multiple host cores under control of a host thread. A device, either235

an attached accelerator or the multicore CPU, executes parallel regions, which typically contain236

work-sharing loops, kernels regions, which typically contain one or more loops that may be exe-237

cuted as kernels, or serial regions, which are blocks of sequential code. Even in accelerator-targeted238

regions, the host thread may orchestrate the execution by allocating memory on the accelerator de-239

vice, initiating data transfer, sending the code to the accelerator, passing arguments to the compute240

region, queuing the accelerator code, waiting for completion, transferring results back to the host,241

9

The OpenACC® API Version Technical Report 24-1 1.2. Execution Model

and deallocating memory. In most cases, the host can queue a sequence of operations to be executed242

on a device, one after the other.243

Most current accelerators and many multicore CPUs support two or three levels of parallelism.244

Most accelerators and multicore CPUs support coarse-grain parallelism, which is fully parallel exe-245

cution across execution units. There may be limited support for synchronization across coarse-grain246

parallel operations. Many accelerators and some CPUs also support fine-grain parallelism, often247

implemented as multiple threads of execution within a single execution unit, which are typically248

rapidly switched on the execution unit to tolerate long latency memory operations. Finally, most249

accelerators and CPUs also support SIMD or vector operations within each execution unit. The250

execution model exposes these multiple levels of parallelism on a device and the programmer is251

required to understand the difference between, for example, a fully parallel loop and a loop that252

is vectorizable but requires synchronization between statements. A fully parallel loop can be pro-253

grammed for coarse-grain parallel execution. Loops with dependences must either be split to allow254

coarse-grain parallel execution, or be programmed to execute on a single execution unit using fine-255

grain parallelism, vector parallelism, or sequentially.256

OpenACC exposes these three levels of parallelism via gang, worker, and vector parallelism. Gang257

parallelism is coarse-grain. A number of gangs will be launched on the accelerator. The gangs are258

organized in a one-, two-, or three-dimensional grid, where dimension one corresponds to the inner259

level of gang parallelism; the default is to only use dimension one. Worker parallelism is fine-grain.260

Each gang will have one or more workers. Vector parallelism is for SIMD or vector operations261

within a worker. In this way, OpenACC provides six levels of parallelism, which are arranged262

from highest to lowest as follows: gang dimension three, gang dimension two, gang dimension one,263

worker, vector, and sequential, which corresponds to no parallelism.264

When executing a compute region on a device, one or more gangs are launched, each with one or265

more workers, where each worker may have vector execution capability with one or more vector266

lanes. The gangs start executing in gang-redundant mode (GR mode), meaning one vector lane of267

one worker in each gang executes the same code, redundantly. Each gang dimension is associated268

with a gang-redundant mode dimension, denoted GR1, GR2, and GR3. When the program reaches269

a loop or loop nest marked for gang-level work-sharing at some dimension, the program starts to270

execute in gang-partitioned mode for that dimension, denoted GP1, GP2, or GP3 mode, where the271

iterations of the loop or loops are partitioned across the gangs in that dimension for truly parallel272

execution, but still with only one worker per gang and one vector lane per worker active. The273

program may be simultaneously in different gang modes for different dimensions. For instance,274

after entering a loop partitioned for gang-level work-sharing at dimension 3, the program will be in275

GP3, GR2, GR1 mode.276

When only one worker is active, in any gang-level execution mode, the program is in worker-single277

mode (WS mode). When only one vector lane is active, the program is in vector-single mode278

(VS mode). If a gang reaches a loop or loop nest marked for worker-level work-sharing, the gang279

transitions to worker-partitioned mode (WP mode), which activates all the workers of the gang. The280

iterations of the loop or loops are partitioned across the workers of this gang. If the same loop is281

marked for both gang-partitioning in dimension d and worker-partitioning, then the iterations of the282

loop are spread across all the workers of all the gangs of dimension d. If a worker reaches a loop283

or loop nest marked for vector-level work-sharing, the worker will transition to vector-partitioned284

mode (VP mode). Similar to WP mode, the transition to VP mode activates all the vector lanes of285

the worker. The iterations of the loop or loops will be partitioned across the vector lanes using vector286

or SIMD operations. Again, a single loop may be marked for one, two, or all three of gang, worker,287

10

The OpenACC® API Version Technical Report 24-1 1.3. Memory Model

and vector parallelism, and the iterations of that loop will be spread across the gangs, workers, and288

vector lanes as appropriate.289

The program starts executing with a single initial host thread, identified by a program counter and290

its stack. The initial host thread may spawn additional host threads, using OpenACC or another291

mechanism, such as with the OpenMP API. On a device, a single vector lane of a single worker of a292

single gang is called a device thread. When executing on an accelerator, a parallel execution context293

is created on the accelerator and may contain many such threads.294

Attempting to implement barrier synchronization, critical sections, or locks across any of gang,295

worker, or vector parallelism might result in deadlock or non-portable code. The execution model296

allows for an implementation that executes some gangs to completion before starting to execute297

other gangs. This means that trying to implement synchronization between gangs is likely to fail. In298

particular, a barrier across gangs cannot be implemented in a portable fashion, since all gangs may299

not ever be active at the same time. Similarly, the execution model allows for an implementation300

that executes some workers within a gang or vector lanes within a worker to completion before301

starting other workers or vector lanes, or for some workers or vector lanes to be suspended until302

other workers or vector lanes complete. This means that trying to implement synchronization across303

workers or vector lanes is likely to fail. In particular, implementing a barrier or critical section across304

workers or vector lanes using atomic operations and a busy-wait loop may never succeed, since the305

scheduler may suspend the worker or vector lane that owns the lock, and the worker or vector lane306

waiting on the lock can never complete.307

Some devices, such as a multicore CPU, may also create and launch additional compute regions,308

allowing for nested parallelism. In that case, the OpenACC directives may be executed by a host309

thread or a device thread. This specification uses the term local thread or local memory to mean the310

thread that executes the directive, or the memory associated with that thread, whether that thread311

executes on the host or on the accelerator. The specification uses the term local device to mean the312

device on which the local thread is executing.313

Most accelerators can operate asynchronously with respect to the host thread. Such devices have one314

or more activity queues. The host thread will enqueue operations onto the device activity queues,315

such as data transfers and procedure execution. After enqueuing the operation, the host thread can316

continue execution while the device operates independently and asynchronously. The host thread317

may query the device activity queue(s) and wait for all the operations in a queue to complete.318

Operations on a single device activity queue will complete before starting the next operation on the319

same queue; operations on different activity queues may be active simultaneously and may complete320

in any order.321

1.3 Memory Model322

The most significant difference between a host-only program and a host+accelerator program is that323

the memory on an accelerator may be discrete from host memory. This is the case with most current324

GPUs, for example. In this case, the host thread may not be able to read or write device memory325

directly because it is not mapped into the host thread’s virtual memory space. All data movement326

between host memory and accelerator memory must be performed by the host thread through system327

calls that explicitly move data between the separate memories, typically using direct memory access328

(DMA) transfers. Similarly, the accelerator may not be able to read or write host memory; though329

this is supported by some accelerators, it may incur significant performance penalty.330

The concept of discrete host and accelerator memories is very apparent in low-level accelerator331

11

The OpenACC® API Version Technical Report 24-1 1.4. Language Interoperability

programming languages such as CUDA or OpenCL, in which data movement between the memories332

can dominate user code. In the OpenACC model, data movement between the memories can be333

implicit and managed by the compiler, based on directives from the programmer. However, the334

programmer must be aware of the potentially discrete memories for many reasons, including but335

not limited to:336

• Memory bandwidth between host memory and accelerator memory determines the level of337

compute intensity required to effectively accelerate a given region of code.338

• Discrete accelerator memory is usually significantly smaller than the host memory, possibly339

prohibiting the offloading of regions of code that operate on very large amounts of data.340

• Data in host memory may only be accessible on the host; data in accelerator memory may341

only be accessible on that accelerator. Explicitly transferring pointer values between host and342

accelerator memory is not advised. Dereferencing pointers to host memory on an accelerator343

or dereferencing pointers to accelerator memory on the host is likely to result in a runtime344

error or incorrect results on such targets.345

OpenACC exposes the discrete memories through the use of a device data environment. Device data346

has an explicit lifetime, from when it is allocated or created until it is deleted. If a device shares347

memory with the local thread, its device data environment will be shared with the local thread. In348

that case, the implementation need not create new copies of the data for the device and no data349

movement need be done. If a device has a discrete memory and shares no memory with the local350

thread, the implementation will allocate space in device memory and copy data between the local351

memory and device memory, as appropriate. The local thread may share some memory with a352

device and also have some memory that is not shared with that device. In that case, data in shared353

memory may be accessed by both the local thread and the device. Data not in shared memory will354

be copied to device memory as necessary.355

Some accelerators implement a weak memory model. In particular, they do not support memory356

coherence between operations executed by different threads; even on the same execution unit, mem-357

ory coherence is only guaranteed when the memory operations are separated by an explicit memory358

fence. Otherwise, if one thread updates a memory location and another reads the same location, or359

two threads store a value to the same location, the hardware may not guarantee the same result for360

each execution. While a compiler can detect some potential errors of this nature, it is nonetheless361

possible to write a compute region that produces inconsistent numerical results.362

Similarly, some accelerators implement a weak memory model for memory shared between the363

host and the accelerator, or memory shared between multiple accelerators. Programmers need to364

be very careful that the program uses appropriate synchronization to ensure that an assignment or365

modification by a thread on any device to data in shared memory is complete and available before366

that data is used by another thread on the same or another device.367

Some current accelerators have a software-managed cache, some have hardware managed caches,368

and most have hardware caches that can be used only in certain situations and are limited to read-369

only data. In low-level programming models such as CUDA or OpenCL languages, it is up to the370

programmer to manage these caches. In the OpenACC model, these caches are managed by the371

compiler with hints from the programmer in the form of directives.372

12

The OpenACC® API Version Technical Report 24-1 1.4. Language Interoperability

1.4 Language Interoperability373

The specification supports programs written using OpenACC in two or more of Fortran, C, and374

C++ languages. The parts of the program in any one base language will interoperate with the parts375

written in the other base languages as described here. In particular:376

• Data made present in one base language on a device will be seen as present by any base377

language.378

• A region that starts and ends in a procedure written in one base language may directly or379

indirectly call procedures written in any base language. The execution of those procedures380

are part of the region.381

1.5 Runtime Errors382

Common runtime errors are noted in this document. When one of these runtime errors is issued, one383

or more error callback routines are called by the program. Error conditions are noted throughout384

Chapter 2 Directives and Chapter 3 Runtime Library along with the error code that gets set for the385

error callback.386

A list of error codes appears in Section 5.2.2. Since device actions may occur asynchronously,387

some errors may occur asynchronously as well. In such cases, the error callback routines may not388

be called immediately when the error occurs, but at some point later when the error is detected389

during program execution. In situations when more than one error may occur or has occurred,390

any one of the errors may be issued and different implementations may issue different errors. An391

acc_error_system error may be issued at any time if the current device becomes unavailable392

due to underlying system issues.393

The default error callback routine may print an error message and halt program execution. The ap-394

plication can register one or more additional error callback routines, to allow a failing application to395

release resources or to cleanly shut down a large parallel runtime with many threads and processes.396

See Chapter 5 Profiling and Error Callback Interface. The error callback mechanism is not intended397

for error recovery. There is no support for restarting or retrying an OpenACC program, construct, or398

API routine after an error condition has been detected and an error callback routine has been called.399

1.6 Conventions used in this document400

Some terms are used in this specification that conflict with their usage as defined in the base lan-401

guages. When there is potential confusion, the term will appear in the Glossary.402

Keywords and punctuation that are part of the actual specification will appear in typewriter font:403

#pragma acc404

Italic font is used where a keyword or other name must be used:405

#pragma acc directive-name406

For C and C++, new-line means the newline character at the end of a line:407

#pragma acc directive-name new-line408

Optional syntax is enclosed in square brackets; an option that may be repeated more than once is409

followed by ellipses:410

13

The OpenACC® API Version Technical Report 24-1 1.7. Organization of this document

#pragma acc directive-name [clause [[,] clause]. . .] new-line411

In this spec, a var (in italics) is one of the following:412

• a variable name (a scalar, array, or composite variable name);413

• a subarray specification with subscript ranges;414

• an array element;415

• a member of a composite variable;416

• a common block name between slashes.417

Not all options are allowed in all clauses; the allowable options are clarified for each use of the term418

var. Unnamed common blocks (blank commons) are not permitted and common blocks of the same419

name must be of the same size in all scoping units as required by the Fortran standard.420

To simplify the specification and convey appropriate constraint information, a pqr-list is a comma-421

separated list of one or more pqr items. For example, an int-expr-list is a comma-separated list422

of one or more integer expressions, and a var-list is a comma-separated list of one or more vars.423

Elements of such a list must not be empty and must not be followed by a trailing comma. The one424

exception is clause-list, which is a list of one or more clauses optionally separated by commas.425

#pragma acc directive-name [clause-list] new-line426

For C/C++, unless otherwise specified, each expression inside of the OpenACC clauses and direc-427

tive arguments must be a valid assignment-expression. This avoids ambiguity between the comma428

operator and comma-separated list items.429

In this spec, a do loop (in italics) is the do construct as defined by the Fortran standard. The do-stmt430

of the do construct must conform to one of the following forms:431

do [label] do-var = lb, ub [, incr]432

do concurrent [label] concurrent-header [concurrent-locality]433

The do-var is a variable name and the lb, ub, incr are scalar integer expressions. A do concurrent434

is treated as if defining a loop for each index in the concurrent-header.435

An italicized true is used for a condition that evaluates to nonzero in C or C++, or .true. in436

Fortran. An italicized false is used for a condition that evaluates to zero in C or C++, or .false.437

in Fortran.438

Further details of OpenACC directive syntax are presented in Section 2.1.439

1.7 Organization of this document440

The rest of this document is organized as follows:441

Chapter 2 Directives, describes the C, C++, and Fortran directives used to delineate accelerator442

regions and augment information available to the compiler for scheduling of loops and classification443

of data.444

Chapter 3 Runtime Library, defines user-callable functions and library routines to query the accel-445

erator features and control behavior of accelerator-enabled programs at runtime.446

14

The OpenACC® API Version Technical Report 24-1 1.8. References

Chapter 4 Environment Variables, defines user-settable environment variables used to control be-447

havior of accelerator-enabled programs at runtime.448

Chapter 5 Profiling and Error Callback Interface, describes the OpenACC interface for tools that449

can be used for profile and trace data collection.450

Chapter 6 Glossary, defines common terms used in this document.451

Appendix A Recommendations for Implementers, gives advice to implementers to support more452

portability across implementations and interoperability with other accelerator APIs.453

1.8 References454

Each language version inherits the limitations that remain in previous versions of the language in455

this list.456

• American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).457

• ISO/IEC 9899:1999, Information Technology – Programming Languages – C, (C99).458

• ISO/IEC 9899:2011, Information Technology – Programming Languages – C, (C11).459

The use of the following C11 features may result in unspecified behavior.460

– Threads461

– Thread-local storage462

– Parallel memory model463

– Atomic464

• ISO/IEC 9899:2018, Information Technology – Programming Languages – C, (C18).465

The use of the following C18 features may result in unspecified behavior.466

– Thread related features467

• ISO/IEC 14882:1998, Information Technology – Programming Languages – C++.468

• ISO/IEC 14882:2011, Information Technology – Programming Languages – C++, (C++11).469

The use of the following C++11 features may result in unspecified behavior.470

– Extern templates471

– copy and rethrow exceptions472

– memory model473

– atomics474

– move semantics475

– std::thread476

– thread-local storage477

• ISO/IEC 14882:2014, Information Technology – Programming Languages – C++, (C++14).478

• ISO/IEC 14882:2017, Information Technology – Programming Languages – C++, (C++17).479

15

The OpenACC® API Version Technical Report 24-1 1.9. Changes from Version 1.0 to 2.0

• ISO/IEC 1539-1:2004, Information Technology – Programming Languages – Fortran – Part480

1: Base Language, (Fortran 2003).481

• ISO/IEC 1539-1:2010, Information Technology – Programming Languages – Fortran – Part482

1: Base Language, (Fortran 2008).483

The use of the following Fortran 2008 features may result in unspecified behavior.484

– Coarrays485

– Simply contiguous arrays rank remapping to rank>1 target486

– Allocatable components of recursive type487

– Polymorphic assignment488

• ISO/IEC 1539-1:2018, Information Technology – Programming Languages – Fortran – Part489

1: Base Language, (Fortran 2018).490

The use of the following Fortran 2018 features may result in unspecified behavior.491

– Interoperability with C492

* C functions declared in ISO Fortran binding.h493

* Assumed rank494

– All additional parallel/coarray features495

• OpenMP Application Program Interface, version 5.0, November 2018496

• NVIDIA CUDA™ C Programming Guide, version 11.1.1, October 2020497

• The OpenCL Specification, version 2.2, Khronos OpenCL Working Group, July 2019498

• INCITS INCLUSIVE TERMINOLOGY GUIDELINES, version 2021.06.07, InterNational Com-499

mittee for Information Technology Standards, June 2021500

• Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, IETF Network Work-501

ing Group, March 1997502

1.9 Changes from Version 1.0 to 2.0503

• _OPENACC value updated to 201306504

• default(none) clause on parallel and kernels directives505

• the implicit data attribute for scalars in parallel constructs has changed506

• the implicit data attribute for scalars in loops with loop directives with the independent507

attribute has been clarified508

• acc_async_sync and acc_async_noval values for the async clause509

• Clarified the behavior of the reduction clause on a gang loop510

• Clarified allowable loop nesting (gang may not appear inside worker, which may not ap-511

pear within vector)512

• wait clause on parallel, kernels and update directives513

16

The OpenACC® API Version Technical Report 24-1 1.9. Changes from Version 1.0 to 2.0

• async clause on the wait directive514

• enter data and exit data directives515

• Fortran common block names may now appear in many data clauses516

• link clause for the declare directive517

• the behavior of the declare directive for global data518

• the behavior of a data clause with a C or C++ pointer variable has been clarified519

• predefined data attributes520

• support for multidimensional dynamic C/C++ arrays521

• tile and auto loop clauses522

• update self introduced as a preferred synonym for update host523

• routine directive and support for separate compilation524

• device_type clause and support for multiple device types525

• nested parallelism using parallel or kernels region containing another parallel or kernels re-526

gion527

• atomic constructs528

• new concepts: gang-redundant, gang-partitioned; worker-single, worker-partitioned; vector-529

single, vector-partitioned; thread530

• new API routines:531

– acc_wait, acc_wait_all instead of acc_async_wait and acc_async_wait_all532

– acc_wait_async533

– acc_copyin, acc_present_or_copyin534

– acc_create, acc_present_or_create535

– acc_copyout, acc_delete536

– acc_map_data, acc_unmap_data537

– acc_deviceptr, acc_hostptr538

– acc_is_present539

– acc_memcpy_to_device, acc_memcpy_from_device540

– acc_update_device, acc_update_self541

• defined behavior with multiple host threads, such as with OpenMP542

• recommendations for specific implementations543

• clarified that no arguments are allowed on the vector clause in a parallel region544

17

The OpenACC® API Version Technical Report 24-1 1.11. Changes from Version 2.0 to 2.5

1.10 Corrections in the August 2013 document545

• corrected the atomic capture syntax for C/C++546

• fixed the name of the acc_wait and acc_wait_all procedures547

• fixed description of the acc_hostptr procedure548

1.11 Changes from Version 2.0 to 2.5549

• The _OPENACC value was updated to 201510; see Section 2.2 Conditional Compilation.550

• The num_gangs, num_workers, and vector_length clauses are now allowed on the551

kernels construct; see Section 2.5.3 Kernels Construct.552

• Reduction on C++ class members, array elements, and struct elements are explicitly disal-553

lowed; see Section 2.5.15 reduction clause.554

• Reference counting is now used to manage the correspondence and lifetime of device data;555

see Section 2.6.7 Reference Counters.556

• The behavior of the exit data directive has changed to decrement the dynamic reference557

counter. A new optional finalize clause was added to set the dynamic reference counter558

to zero. See Section 2.6.6 Enter Data and Exit Data Directives.559

• The copy, copyin, copyout, and create data clauses were changed to behave like560

present_or_copy, etc. The present_or_copy, pcopy, present_or_copyin,561

pcopyin, present_or_copyout, pcopyout, present_or_create, and pcreate562

data clauses are no longer needed, though will be accepted for compatibility; see Section 2.7563

Data Clauses.564

• Reductions on orphaned gang loops are explicitly disallowed; see Section 2.9 Loop Construct.565

• The description of the loop auto clause has changed; see Section 2.9.7 auto clause.566

• Text was added to the private clause on a loop construct to clarify that a copy is made567

for each gang or worker or vector lane, not each thread; see Section 2.9.10 private clause.568

• The description of the reduction clause on a loop construct was corrected; see Sec-569

tion 2.9.11 reduction clause.570

• A restriction was added to the cache clause that all references to that variable must lie within571

the region being cached; see Section 2.10 Cache Directive.572

• Text was added to the private and reduction clauses on a combined construct to clarify573

that they act like private and reduction on the loop, not private and reduction574

on the parallel or reduction on the kernels; see Section 2.11 Combined Constructs.575

• The declare create directive with a Fortran allocatable has new behavior; see Sec-576

tion 2.13.2 create clause.577

• New init, shutdown, set directives were added; see Section 2.14.1 Init Directive, 2.14.2578

Shutdown Directive, and 2.14.3 Set Directive.579

• A new if_present clause was added to the update directive, which changes the behavior580

when data is not present from a runtime error to a no-op; see Section 2.14.4 Update Directive.581

18

The OpenACC® API Version Technical Report 24-1 1.12. Changes from Version 2.5 to 2.6

• The routine bind clause definition changed; see Section 2.15.1 Routine Directive.582

• An acc routine without gang/worker/vector/seq is now defined as an error; see583

Section 2.15.1 Routine Directive.584

• A new default(present) clause was added for compute constructs; see Section 2.5.16585

default clause.586

• The Fortran header file openacc_lib.h is no longer supported; see Section 3.1 Runtime Library Definitions.587

• New API routines were added to get and set the default async queue value; see Section 3.2.13588

acc get default async and 3.2.14 acc set default async.589

• The acc_copyin, acc_create, acc_copyout, and acc_delete API routines were590

changed to behave like acc_present_or_copyin, etc. The acc_present_or_ names591

are no longer needed, though will be supported for compatibility. See Sections 3.2.18 and fol-592

lowing.593

• Asynchronous versions of the data API routines were added; see Sections 3.2.18 and follow-594

ing.595

• A new API routine added, acc_memcpy_device, to copy from one device address to596

another device address; see Section 3.2.26 acc memcpy to device.597

• A new OpenACC interface for profile and trace tools was added;598

see Chapter 5 Profiling and Error Callback Interface.599

1.12 Changes from Version 2.5 to 2.6600

• The _OPENACC value was updated to 201711.601

• A new serial compute construct was added. See Section 2.5.2 Serial Construct.602

• A new runtime API query routine was added. acc_get_property may be called from603

the host and returns properties about any device. See Section 3.2.6.604

• The text has clarified that if a variable is in a reduction which spans two or more nested loops,605

each loop directive on any of those loops must have a reduction clause that contains the606

variable; see Section 2.9.11 reduction clause.607

• An optional if or if_present clause is now allowed on the host_data construct. See608

Section 2.8 Host Data Construct.609

• A new no_create data clause is now allowed on compute and data constructs. See Sec-610

tion 2.7.11 no create clause.611

• The behavior of Fortran optional arguments in data clauses and in routine calls has been612

specified; see Section 2.17.1 Optional Arguments.613

• The descriptions of some of the Fortran versions of the runtime library routines were simpli-614

fied; see Section 3.2 Runtime Library Routines.615

• To allow for manual deep copy of data structures with pointers, new attach and detach be-616

havior was added to the data clauses, new attach and detach clauses were added, and617

matching acc_attach and acc_detach runtime API routines were added; see Sections618

2.6.4, 2.7.13-2.7.14 and 3.2.29.619

19

The OpenACC® API Version Technical Report 24-1 1.14. Changes from Version 2.7 to 3.0

• The Intel Coprocessor Offload Interface target and API routine sections were removed from620

the Section A Recommendations for Implementers, since Intel no longer produces this prod-621

uct.622

1.13 Changes from Version 2.6 to 2.7623

• The _OPENACC value was updated to 201811.624

• The specification allows for hosts that share some memory with the device but not all memory.625

The wording in the text now discusses whether local thread data is in shared memory (memory626

shared between the local thread and the device) or discrete memory (local thread memory that627

is not shared with the device), instead of shared-memory devices and non-shared memory628

devices. See Sections 1.3 Memory Model and 2.6 Data Environment.629

• The text was clarified to allow an implementation that treats a multicore CPU as a device,630

either an additional device or the only device.631

• The readonly modifier was added to the copyin data clause and cache directive. See632

Sections 2.7.8 and 2.10.633

• The term local device was defined; see Section 1.2 Execution Model and the Glossary.634

• The term var is used more consistently throughout the specification to mean a variable name,635

array name, subarray specification, array element, composite variable member, or Fortran636

common block name between slashes. Some uses of var allow only a subset of these options,637

and those limitations are given in those cases.638

• The self clause was added to the compute constructs; see Section 2.5.7 self clause.639

• The appearance of a reduction clause on a compute construct implies a copy clause for640

each reduction variable; see Sections 2.5.15 reduction clause and 2.11 Combined Constructs.641

• The default(none) and default(present) clauses were added to the data con-642

struct; see Section 2.6.5 Data Construct.643

• Data is defined to be present based on the values of the structured and dynamic reference644

counters; see Section 2.6.7 Reference Counters and the Glossary.645

• The interaction of the acc_map_data and acc_unmap_data runtime API calls on the646

present counters is defined; see Section 2.7.2, 3.2.21, and 3.2.22.647

• A restriction clarifying that a host_data construct must have at least one use_device648

clause was added.649

• Arrays, subarrays and composite variables are now allowed in reduction clauses; see650

Sections 2.9.11 reduction clause and 2.5.15 reduction clause.651

• Changed behavior of ICVs to support nested compute regions and host as a device semantics.652

See Section 2.3.653

1.14 Changes from Version 2.7 to 3.0654

• Updated _OPENACC value to 201911.655

• Updated the normative references to the most recent standards for all base languages. See656

Section 1.8.657

20

The OpenACC® API Version Technical Report 24-1 1.14. Changes from Version 2.7 to 3.0

• Changed the text to clarify uses and limitations of the device_type clause and added658

examples; see Section 2.4.659

• Clarified the conflict between the implicit copy clause for variables in a reduction clause660

and the implicit firstprivate for scalar variables not in a data clause but used in a661

parallel or serial construct; see Sections 2.5.1 and 2.5.2.662

• Required at least one data clause on a data construct, an enter data directive, or an exit663

data directive; see Sections 2.6.5 and 2.6.6.664

• Added text describing how a C++ lambda invoked in a compute region and the variables665

captured by the lambda are handled; see Section 2.6.2.666

• Added a zeromodifier to create and copyout data clauses that zeros the device memory667

after it is allocated; see Sections 2.7.9 and 2.7.10.668

• Added a new restriction on the loop directive allowing only one of the seq, independent,669

and auto clauses to appear; see Section 2.9.670

• Added a new restriction on the loop directive disallowing a gang, worker, or vector671

clause to appear if a seq clause appears; see Section 2.9.672

• Allowed variables to be modified in an atomic region in a loop where the iterations must673

otherwise be data independent, such as loops with a loop independent clause or a loop674

directive in a parallel construct; see Sections 2.9.2, 2.9.3, 2.9.4, and 2.9.6.675

• Clarified the behavior of the auto and independent clauses on the loop directive; see676

Sections 2.9.7 and 2.9.6.677

• Clarified that an orphaned loop construct, or a loop construct in a parallel construct678

with no auto or seq clauses is treated as if an independent clause appears; see Sec-679

tion 2.9.6.680

• For a variable in a reduction clause, clarified when the update to the original variable is681

complete, and added examples; see Section 2.9.11.682

• Clarified that a variable in an orphaned reduction clause must be private; see Section 2.9.11.683

• Required at least one clause on a declare directive; see Section 2.13.684

• Added an if clause to init, shutdown, set, and wait directives; see Sections 2.14.1,685

2.14.2, 2.14.3, and 2.16.3.686

• Required at least one clause on a set directive; see Section 2.14.3.687

• Added a devnum modifier to the wait directive and clause to specify a device to which the688

wait operation applies; see Section 2.16.3.689

• Allowed a routine directive to include a C++ lambda name or to appear before a C++690

lambda definition, and defined implicit routine directive behavior when a C++ lambda is691

called in a compute region or an accelerator routine; see Section 2.15.692

• Added runtime API routine acc_memcpy_d2d for copying data directly between two de-693

vice arrays on the same or different devices; see Section 3.2.30.694

• Defined the values for the acc_construct_t and acc_device_api enumerations for695

cross-implementation compatibility; see Sections 5.2.2 and 5.2.3.696

21

The OpenACC® API Version Technical Report 24-1 1.15. Changes from Version 3.0 to 3.1

• Changed the return type of acc_set_cuda_stream from int (values were not specified)697

to void; see Section A.2.1.698

• Edited and expanded Section 1.19 Topics Deferred For a Future Revision.699

1.15 Changes from Version 3.0 to 3.1700

• Updated _OPENACC value to 202011.701

• Clarified that Fortran blank common blocks are not permitted and that same-named common702

blocks must have the same size. See Section 1.6.703

• Clarified that a parallel construct’s block is considered to start in gang-redundant mode704

even if there’s just a single gang. See Section 2.5.1.705

• Added support for the Fortran BLOCK construct. See Sections 2.5.1, 2.5.3, 2.6.1, 2.6.5, 2.8,706

2.13, and 6.707

• Defined the serial construct in terms of the parallel construct to improve readability.708

Instead of defining it in terms of clauses num_gangs(1) num_workers(1)709

vector_length(1), defined the serial construct as executing with a single gang of a710

single worker with a vector length of one. See Section 2.5.2.711

• Consolidated compute construct restrictions into a new section to improve readability. See712

Section 2.5.4.713

• Clarified that a default clause may appear at most once on a compute construct. See714

Section 2.5.16.715

• Consolidated discussions of implicit data attributes on compute and combined constructs into716

a separate section. Clarified the conditions under which each data attribute is implied. See717

Section 2.6.2.718

• Added a restriction that certain loop reduction variables must have explicit data clauses on719

their parent compute constructs. This change addresses portability across existing OpenACC720

implementations. See Sections 2.6.2 and A.3.3.721

• Restored the OpenACC 2.5 behavior of the present, copy, copyin, copyout, create,722

no_create, delete data clauses at exit from a region, or on an exit data directive, as723

applicable, and create clause at exit from an implicit data region where a declare di-724

rective appears, and acc_copyout, acc_delete routines, such that no action is taken if725

the appropriate reference counter is zero, instead of a runtime error being issued if data is not726

present. See Sections 2.7.6, 2.7.7, 2.7.8, 2.7.9, 2.7.10, 2.7.11, 2.7.12, 2.13.2, and 3.2.19.727

• Clarified restrictions on loop forms that can be associated with loop constructs, including728

the case of C++ range-based for loops. See Section 2.9.729

• Specified where gang clauses are implied on loop constructs. This change standardizes730

behavior of existing OpenACC implementations. See Section 2.9.2.731

• Corrected C/C++ syntax for atomic capture with a structured block. See Section 2.12.732

• Added the behavior of the Fortran do concurrent construct. See Section 2.17.2.733

22

The OpenACC® API Version Technical Report 24-1 1.16. Changes from Version 3.1 to 3.2

• Changed the Fortran run-time procedures: acc_device_property has been renamed to734

acc_device_property_kind and acc_get_property uses a different integer kind735

for the result. See Section 3.2.736

• Added or changed argument names for the Runtime Library routines to be descriptive and737

consistent. This mostly impacts Fortran programs, which can pass arguments by name. See738

Section 3.2.739

• Replaced composite variable by aggregate variable in reduction, default, and private740

clauses and in implicitly determined data attributes; the new wording also includes Fortran741

character and allocatable/pointer variables. See glossary in Section 6.742

1.16 Changes from Version 3.1 to 3.2743

• Updated _OPENACC value to 202111.744

• Modified specification to comply with INCITS standard for inclusive terminology.745

• The text was changed to state that certain runtime errors, when detected, result in a call to the746

current runtime error callback routines. See Section 1.5.747

• An ambiguity issue with the C/C++ comma operator was resolved. See Section 1.6.748

• The terms true and false were defined and used throughout to shorten the descriptions. See749

Section 1.6.750

• Implicitly determined data attributes on compute constructs were clarified. See Section 2.6.2.751

• Clarified that the default(none) clause applies to scalar variables. See Section 2.6.2.752

• The async, wait, and device_type clauses may be specified on data constructs. See753

Section 2.6.5.754

• The behavior of data clauses and data API routines with a null pointer in the clause or as a755

routine argument is defined. See Sections 2.7.6-2.7.12, 2.8.1, and 3.2.16-3.2.30.756

• Precision issues with the loop trip count calculation were clarified. See Section 2.9.757

• Text in Section 2.16 was moved and reorganized to improve clarity and reduce redundancy.758

• Some runtime routine descriptions were expanded and clarified. See Section 3.2.759

• The acc_init_device and acc_shutdown_device routines were added to initialize760

and shut down individual devices. See Section 3.2.7 and Section 3.2.8.761

• Some runtime routine sections were reorganized and combined into a single section to sim-762

plify maintenance and reduce redundant text:763

– The sections for four acc_async_test routines were combined into a single section.764

See Section 3.2.9.765

– The sections for four acc_wait routines were combined into a single section. See766

Section 3.2.10.767

– The sections for four acc_wait_async routines were combined into a single section.768

See Section 3.2.11.769

23

The OpenACC® API Version Technical Report 24-1 1.17. Changes from Version 3.2 to 3.3

– The two sections for acc_copyin and acc_create were combined into a single770

section. See Section 3.2.18.771

– The two sections for acc_copyout and acc_delete were combined into a single772

section. See Section 3.2.19.773

– The two sections for acc_update_self and acc_update_device were com-774

bined into a single section. See Section 3.2.20.775

– The two sections for acc_attach and acc_detach were combined into a single776

section. See Section 3.2.29.777

• Added runtime API routine acc_wait_any. See section 3.2.12.778

• The descriptions of the async and async_queue fields of acc_callback_info were779

clarified. See Section 5.2.1.780

1.17 Changes from Version 3.2 to 3.3781

• Updated _OPENACC value to 202211.782

• Allowed three dimensions of gang parallelism:783

– Defined multiple levels of gang-redundant and gang-partitioned execution modes. See784

Section 1.2785

– Allowed multiple values in the num_gangs clauses on the parallel construct. See786

Section 2.5.10.787

– Allowed a dim argument to the gang clause on the loop construct. See Section 2.9.2.788

– Allowed a dim argument to the gang clause on the routine directive. See Sec-789

tion 2.15.1.790

– Changed the launch event information to include all three gang dimension sizes. See791

Section 5.2.2.792

• Clarified user-visible behavior of evaluation of expressions in clause arguments. See Sec-793

tion 2.1.794

• Added the force modifier to the collapse clause on loops to enable collapsing non-795

tightly nested loops. See Section 2.9.1.796

• Generalized implicit routine directives for all procedures instead of just C++ lambdas. See797

Section 2.15.1.798

• Revised Section 2.15.1 for clarity and conciseness, including:799

– Specified predetermined routine directives that the implementation may apply.800

– Clarified where routine directives must appear relative to definitions or uses of their801

associated procedures in C and C++. This clarification includes the case of forward802

references in C++ class member lists.803

– Clarified to which procedure a routine directive with a name applies in C and C++.804

– Clarified how a nohost clause affects a procedure’s use within a compute region.805

24

The OpenACC® API Version Technical Report 24-1 1.18. Changes from Version 3.3 to TR 24-1

• Added a Fortran interface for the following runtime routines (See Chapter 3):806

– acc_malloc807

– acc_free808

– acc_map_data809

– acc_unmap_data810

– acc_deviceptr811

– acc_hostptr812

– The two acc_memcpy_to_device routines813

– The two acc_memcpy_from_device routines814

– The two acc_memcpy_device routines815

– The two acc_attach routines816

– The four acc_detach routines817

• Added a new error condition for acc_map_data when the bytes argument is zero. See818

Section 3.2.21.819

• Added recommendations for how a routine directive affects multicore host CPU compila-820

tion. See Section A.1.3.821

• Recommended additional diagnostics promoting portable and readable OpenACC. See Section A.3.822

1.18 Changes from Version 3.3 to TR 24-1823

• Clarified that a pqr-list must have at least one item and is not permitted to have a trailing824

comma. See Section 1.6.825

• Clarified that the _Pragma operator form is supported for OpenACC directives in C and826

C++. See Section 2.1.827

• Clarified user-visible behavior of evaluation of expressions in directive arguments. See Section-828

2.1.829

• Clarified the analysis of implicit data attributes and parallelism across the boundaries of pro-830

cedures that can appear within other procedures (e.g., C++ lambdas, C++ class member func-831

tions, and Fortran internal procedures). See Sections 2.5, 2.6.2, 2.9, and 2.15.1.832

• Restated data actions to improve data clause descriptions. See Section 2.7.2.833

• Added the capture modifier for specifying that a particular variable requires a discrete834

copy in device-accessible memory, even when already in shared memory. See Section 2.7.4,835

Section 2.7.9 and Section 2.7.10.836

• Added the always, alwaysin, and alwaysout modifiers to the copy, copyin, and837

copyout data clauses. See Section 2.7.7, Section 2.7.8, and Section 2.7.9.838

• Clarified that intrinsic assignment of declare create variable in Fortran will result in memory839

allocation and/or deallocation on the device if memory is allocated and/or deallocated on the840

host. See Section 2.7.10841

25

The OpenACC® API Version Technical Report 24-1 1.19. Topics Deferred For a Future Revision

• Clarified that compatibility of nested levels of parallelism can be validated at compile time.842

See Sections 2.9 and 2.15.1.843

• Added the if clause to the atomic construct to enable conditional atomic operations based844

on the parallelism strategy employed. See Section 2.12.845

• Clarified that in Fortran any declare directive with a create or device_resident846

clause referencing a variable with the allocatable or pointer attributes must be visible when847

the variable is allocated or deallocated. See Section 2.13.848

• Specified that routine directives are implicitly determined for C++ lambdas such that849

gang, worker, vector, seq, and nohost clauses are selected based on their definitions.850

See Section 2.15.1.851

• Clarified that a C++ lambda has an implicit routine directive with a nohost clause if an852

enclosing accelerator routine has a nohost clause even if the lambda is unused. This case853

might affect compilation of OpenACC programs during development. See Section 2.15.1.854

1.19 Topics Deferred For a Future Revision855

The following topics are under discussion for a future revision. Some of these are known to be856

important, while others will depend on feedback from users. Readers who have feedback or want857

to participate may send email to feedback@openacc.org. No promises are made or implied that all858

these items will be available in a future revision.859

• Directives to define implicit deep copy behavior for pointer-based data structures.860

• Defined behavior when data in data clauses on a directive are aliases of each other.861

• Clarifying when data becomes present or not present on the device for enter data or exit862

data directives with an async clause.863

• Clarifying the behavior of Fortran pointer variables in data clauses.864

• Allowing Fortran pointer variables to appear in deviceptr clauses.865

• Support for attaching C/C++ pointers that point to an address past the end of a memory region.866

• Fully defined interaction with multiple host threads.867

• Optionally removing the synchronization or barrier at the end of vector and worker loops.868

• Allowing an if clause after a device_type clause.869

• A shared clause (or something similar) for the loop directive.870

• Better support for multiple devices from a single thread, whether of the same type or of871

different types.872

• An auto construct (by some name), to allow kernels-like auto-parallelization behavior873

inside parallel constructs or accelerator routines.874

• A begin declare . . .end declare construct that behaves like putting any global vari-875

ables declared inside the construct in a declare clause.876

• Defining the behavior of additional parallelism constructs in the base languages when used877

inside a compute construct or accelerator routine.878

26

mailto:feedback@openacc.org

The OpenACC® API Version Technical Report 24-1 1.19. Topics Deferred For a Future Revision

• Optimization directives or clauses, such as an unroll directive or clause.879

• Extended reductions.880

• Fortran bindings for all the API routines.881

• A linear clause for the loop directive.882

• Allowing two or more of gang, worker, vector, or seq clause on an acc routine883

directive.884

• A single list of all devices of all types, including the host device.885

• A memory allocation API for specific types of memory, including device memory, host pinned886

memory, and unified memory.887

• Allowing non-contiguous Fortran array sections as arguments to some Runtime API routines,888

such as acc_update_device.889

• Bindings to other languages.890

• Allowing capture modifier on unstructured data lifetimes.891

27

The OpenACC® API Version Technical Report 24-1 1.19. Topics Deferred For a Future Revision

28

The OpenACC® API Version Technical Report 24-1 2.1. Directive Format

2. Directives892

This chapter describes the syntax and behavior of the OpenACC directives. In C and C++, Open-893

ACC directives are specified using the pragma mechanism provided by the language. In Fortran,894

OpenACC directives are specified using special comments that are identified by a unique sentinel.895

Compilers will typically ignore OpenACC directives if support is disabled or not provided.896

2.1 Directive Format897

In C and C++, an OpenACC directive is specified as either a #pragma directive:898

#pragma acc directive-name [clause-list] new-line899

or a _Pragma operator:900

_Pragma("acc directive-name [clause-list]")901

While any OpenACC directive can be specified equivalently in either form, the convention in this902

document is to show only the #pragma form. The first preprocessing token within either form is903

acc. The remainder of the directive follows the C and C++ conventions for pragmas. Whitespace904

may be used before and after the #; whitespace may be required to separate words in a directive.905

Preprocessing tokens following acc are subject to macro replacement. Directives are case-sensitive.906

In Fortran, OpenACC directives are specified in free-form source files as907

!$acc directive-name [clause-list]908

The comment prefix (!) may appear in any column, but may only be preceded by whitespace (spaces909

and tabs). The sentinel (!$acc) must appear as a single word, with no intervening whitespace.910

Line length, whitespace, and continuation rules apply to the directive line. Initial directive lines911

must have whitespace after the sentinel. Continued directive lines must have an ampersand (&) as912

the last nonblank character on the line, prior to any comment placed in the directive. Continuation913

directive lines must begin with the sentinel (possibly preceded by whitespace) and may have an914

ampersand as the first non-whitespace character after the sentinel. Comments may appear on the915

same line as a directive, starting with an exclamation point and extending to the end of the line. If916

the first nonblank character after the sentinel is an exclamation point, the line is ignored.917

In Fortran fixed-form source files, OpenACC directives are specified as one of918

!$acc directive-name [clause-list]919

c$acc directive-name [clause-list]920

*$acc directive-name [clause-list]921

The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5. Fixed form line length,922

whitespace, continuation, and column rules apply to the directive line. Initial directive lines must923

have a space or zero in column 6, and continuation directive lines must have a character other than924

a space or zero in column 6. Comments may appear on the same line as a directive, starting with an925

exclamation point on or after column 7 and continuing to the end of the line.926

In Fortran, directives are case-insensitive. Directives cannot be embedded within continued state-927

ments, and statements must not be embedded within continued directives. In this document, free928

form is used for all Fortran OpenACC directive examples.929

29

The OpenACC® API Version Technical Report 24-1 2.2. Conditional Compilation

Only one directive-name can appear per directive, except that a combined directive name is consid-930

ered a single directive-name.931

The order in which clauses appear is not significant unless otherwise specified. A program must932

not depend on the order of evaluation of expressions in clause, construct, or directive arguments,933

or on any side effects of the evaluations. (See examples below.) Clauses may be repeated unless934

otherwise specified.935

Further details of OpenACC directive syntax are presented in Section 1.6.936

H H
937

Examples938

939

• In the following example, the order and number of evaluations of ++i and calls to foo()940

and bar() are unspecified.941

#pragma acc parallel \942

num_gangs(foo(++i)) \943

num_workers(bar(++i)) \944

async(foo(++i))945

{ ... }946

See Section 2.5.1 for the parallel construct.947

• In the following example, if the implementation knows that array is not present in the948

current device memory, it may omit calling size().949

#pragma acc update \950

device(array[0:size()])951

if_present952

See Section 2.14.4 for the update directive.953

• In the following example, execution and order of the constructor and destructor of S and U is954

not guaranteed.955

#pragma acc wait(devnum:S{}.Value:queues:acc_async_sync) \956

if (U{}.Condition)957

See Section 2.16.3 for the wait directive.958

N N959

960

2.2 Conditional Compilation961

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and mm is962

the month designation of the version of the OpenACC directives supported by the implementation.963

This macro must be defined by a compiler only when OpenACC directives are enabled. The version964

described here is 202211.965

30

The OpenACC® API Version Technical Report 24-1 2.3. Internal Control Variables

2.3 Internal Control Variables966

An OpenACC implementation acts as if there are internal control variables (ICVs) that control the967

behavior of the program. These ICVs are initialized by the implementation, and may be given968

values through environment variables and through calls to OpenACC API routines. The program969

can retrieve values through calls to OpenACC API routines.970

The ICVs are:971

• acc-current-device-type-var - controls which type of device is used.972

• acc-current-device-num-var - controls which device of the selected type is used.973

• acc-default-async-var - controls which asynchronous queue is used when none appears in an974

async clause.975

2.3.1 Modifying and Retrieving ICV Values976

The following table shows environment variables or procedures to modify the values of the internal977

control variables, and procedures to retrieve the values:978

ICV Ways to modify values Way to retrieve value

acc-current-device-type-var acc_set_device_type acc_get_device_type

set device_type

init device_type

ACC_DEVICE_TYPE

acc-current-device-num-var acc_set_device_num acc_get_device_num

set device_num

init device_num

ACC_DEVICE_NUM

acc-default-async-var acc_set_default_async acc_get_default_async

set default_async

979

The initial values are implementation-defined. After initial values are assigned, but before any980

OpenACC construct or API routine is executed, the values of any environment variables that were981

set by the user are read and the associated ICVs are modified accordingly. There is one copy of982

each ICV for each host thread that is not generated by a compute construct. For threads that are983

generated by a compute construct the initial value for each ICV is inherited from the local thread.984

The behavior for each ICV is as if there is a copy for each thread. If an ICV is modified, then a985

unique copy of that ICV must be created for the modifying thread.986

2.4 Device-Specific Clauses987

OpenACC directives can specify different clauses or clause arguments for different devices using988

the device_type clause. Clauses that precede any device_type clause are default clauses.989

Clauses that follow a device_type clause up to the end of the directive or up to the next990

device_type clause are device-specific clauses for the device types specified in the device_type991

argument. For each directive, only certain clauses may be device-specific clauses. If a directive has992

at least one device-specific clause, it is device-dependent, and otherwise it is device-independent.993

The argument to the device_type clause is a comma-separated list of one or more device ar-994

chitecture name identifiers, or an asterisk. An asterisk indicates all device types that are not named995

31

The OpenACC® API Version Technical Report 24-1 2.4. Device-Specific Clauses

in any other device_type clause on that directive. A single directive may have one or several996

device_type clauses. The device_type clauses may appear in any order.997

Except where otherwise noted, the rest of this document describes device-independent directives, on998

which all clauses apply when compiling for any device type. When compiling a device-dependent999

directive for a particular device type, the directive is treated as if the only clauses that appear are (a)1000

the clauses specific to that device type and (b) all default clauses for which there are no like-named1001

clauses specific to that device type. If, for any device type, the resulting directive is nonconforming,1002

then the original directive is nonconforming.1003

The supported device types are implementation-defined. Depending on the implementation and the1004

compiling environment, an implementation may support only a single device type, or may support1005

multiple device types but only one at a time, or may support multiple device types in a single1006

compilation.1007

A device architecture name may be generic, such as a vendor, or more specific, such as a partic-1008

ular generation of device; see Appendix A Recommendations for Implementers for recommended1009

names. When compiling for a particular device, the implementation will use the clauses associated1010

with the device_type clause that specifies the most specific architecture name that applies for1011

this device; clauses associated with any other device_type clause are ignored. In this context,1012

the asterisk is the least specific architecture name.1013

Syntax1014

The syntax of the device_type clause is1015

device_type(*)1016

device_type(device-type-list)1017

1018

The device_type clause may be abbreviated to dtype.1019

H H
1020

Examples1021

1022

• On the following directive, worker appears as a device-specific clause for devices of type1023

foo, but gang appears as a default clause and so applies to all device types, including foo.1024

#pragma acc loop gang device_type(foo) worker1025

• The first directive below is identical to the previous directive except that loop is replaced1026

with routine. Unlike loop, routine does not permit gang to appear with worker,1027

but both apply for device type foo, so the directive is nonconforming. The second directive1028

below is conforming because gang there applies to all device types except foo.1029

// nonconforming: gang and worker not permitted together1030

#pragma acc routine gang device_type(foo) worker1031

1032

// conforming: gang and worker for different device types1033

#pragma acc routine device_type(foo) worker \1034

device_type(*) gang1035

32

The OpenACC® API Version Technical Report 24-1 2.5. Compute Constructs

• On the directive below, the value of num_gangs is 4 for device type foo, but it is 2 for all1036

other device types, including bar. That is, foo has a device-specific num_gangs clause,1037

so the default num_gangs clause does not apply to foo.1038

!$acc parallel num_gangs(2) &1039

!$acc device_type(foo) num_gangs(4) &1040

!$acc device_type(bar) num_workers(8)1041

• The directive below is the same as the previous directive except that num_gangs(2) has1042

moved after device_type(*) and so now does not apply to foo or bar.1043

!$acc parallel device_type(*) num_gangs(2) &1044

!$acc device_type(foo) num_gangs(4) &1045

!$acc device_type(bar) num_workers(8)1046

N N1047

1048

2.5 Compute Constructs1049

Compute constructs indicate code that is intended to be executed on the current device. It is imple-1050

mentation defined how users specify for which accelerators that code is compiled and whether it is1051

also compiled for the host.1052

For any point in the program, the parent procedure is the nearest lexically enclosing procedure such1053

that expressions at this point are not evaluated until the procedure is called. For example, the parent1054

procedure within the capture specification of a C++ lambda is the procedure in which the lambda is1055

defined, but the parent procedure within the lambda’s body is the lambda itself.1056

For any point in the program, the parent compute construct is the nearest lexically enclosing com-1057

pute construct that has the same parent procedure.1058

For any point in the program, the parent compute scope is the parent compute construct or, if none,1059

the parent procedure.1060

2.5.1 Parallel Construct1061

Summary1062

This fundamental construct starts parallel execution on the current device.1063

Syntax1064

In C and C++, the syntax of the OpenACC parallel construct is1065

#pragma acc parallel [clause-list] new-line1066

structured block1067

1068

and in Fortran, the syntax is1069

!$acc parallel [clause-list]1070

structured block1071

!$acc end parallel1072

or1073

33

The OpenACC® API Version Technical Report 24-1 2.5. Compute Constructs

!$acc parallel [clause-list]1074

block construct1075

[!$acc end parallel]1076

where clause is one of the following:1077

async [(int-expr)]1078

wait [(int-expr-list)]1079

num_gangs(int-expr-list)1080

num_workers(int-expr)1081

vector_length(int-expr)1082

device_type(device-type-list)1083

if(condition)1084

self [(condition)]1085

reduction(operator : var-list)1086

copy([modifier-list :] var-list)1087

copyin([modifier-list :] var-list)1088

copyout([modifier-list :] var-list)1089

create([modifier-list :] var-list)1090

no_create(var-list)1091

present(var-list)1092

deviceptr(var-list)1093

attach(var-list)1094

private(var-list)1095

firstprivate(var-list)1096

default(none | present)1097

Description1098

When the program encounters an accelerator parallel construct, one or more gangs of workers1099

are created to execute the accelerator parallel region. The number of gangs, and the number of1100

workers in each gang and the number of vector lanes per worker remain constant for the duration of1101

that parallel region. Each gang begins executing the code in the structured block in gang-redundant1102

mode even if there is only a single gang. This means that code within the parallel region, but outside1103

of a loop construct with gang-level worksharing, will be executed redundantly by all gangs.1104

One worker in each gang begins executing the code in the structured block of the construct. Note:1105

Unless there is a loop construct within the parallel region, all gangs will execute all the code within1106

the region redundantly.1107

If the async clause does not appear, there is an implicit barrier at the end of the accelerator parallel1108

region, and the execution of the local thread will not proceed until all gangs have reached the end1109

of the parallel region.1110

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach1111

data clauses are described in Section 2.7 Data Clauses. The private and firstprivate1112

clauses are described in Sections 2.5.13 and Sections 2.5.14. The device_type clause is de-1113

scribed in Section 2.4 Device-Specific Clauses. Implicitly determined data attributes are described1114

in Section 2.6.2. Restrictions are described in Section 2.5.4.1115

2.5.2 Serial Construct1116

34

The OpenACC® API Version Technical Report 24-1 2.5. Compute Constructs

Summary1117

This construct defines a region of the program that is to be executed sequentially on the current1118

device. The behavior of the serial construct is the same as that of the parallel construct1119

except that it always executes with a single gang of a single worker with a vector length of one.1120

Note: The serial construct may be used to execute sequential code on the current device,1121

which removes the need for data movement when the required data is already present on the device.1122

Syntax1123

In C and C++, the syntax of the OpenACC serial construct is1124

#pragma acc serial [clause-list] new-line1125

structured block1126

1127

and in Fortran, the syntax is1128

!$acc serial [clause-list]1129

structured block1130

!$acc end serial1131

or1132

!$acc serial [clause-list]1133

block construct1134

[!$acc end serial]1135

where clause is as for the parallel construct except that the num_gangs, num_workers, and1136

vector_length clauses are not permitted.1137

2.5.3 Kernels Construct1138

Summary1139

This construct defines a region of the program that is to be compiled into a sequence of kernels for1140

execution on the current device.1141

Syntax1142

In C and C++, the syntax of the OpenACC kernels construct is1143

#pragma acc kernels [clause-list] new-line1144

structured block1145

1146

and in Fortran, the syntax is1147

!$acc kernels [clause-list]1148

structured block1149

!$acc end kernels1150

or1151

!$acc kernels [clause-list]1152

block construct1153

[!$acc end kernels]1154

35

The OpenACC® API Version Technical Report 24-1 2.5. Compute Constructs

where clause is one of the following:1155

async [(int-expr)]1156

wait [(int-expr-list)]1157

num_gangs(int-expr)1158

num_workers(int-expr)1159

vector_length(int-expr)1160

device_type(device-type-list)1161

if(condition)1162

self [(condition)]1163

copy([modifier-list :] var-list)1164

copyin([modifier-list :] var-list)1165

copyout([modifier-list :] var-list)1166

create([modifier-list :] var-list)1167

no_create(var-list)1168

present(var-list)1169

deviceptr(var-list)1170

attach(var-list)1171

default(none | present)1172

Description1173

The compiler will split the code in the kernels region into a sequence of accelerator kernels. Typi-1174

cally, each loop nest will be a distinct kernel. When the program encounters a kernels construct,1175

it will launch the sequence of kernels in order on the device. The number and configuration of gangs1176

of workers and vector length may be different for each kernel.1177

If the async clause does not appear, there is an implicit barrier at the end of the kernels region,1178

and the local thread execution will not proceed until the entire sequence of kernels has completed1179

execution.1180

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach1181

data clauses are described in Section 2.7 Data Clauses. The device_type clause is described1182

in Section 2.4 Device-Specific Clauses. Implicitly determined data attributes are described in Sec-1183

tion 2.6.2. Restrictions are described in Section 2.5.4.1184

2.5.4 Compute Construct Restrictions1185

The following restrictions apply to all compute constructs:1186

• A program may not branch into or out of a compute construct.1187

• Only the async, wait, num_gangs, num_workers, and vector_length clauses1188

may follow a device_type clause.1189

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical1190

value; in C or C++, the condition must evaluate to a scalar integer value.1191

• At most one default clause may appear, and it must have a value of either none or1192

present.1193

• A reduction clause may not appear on a parallel construct with a num_gangs clause1194

that has more than one argument.1195

36

The OpenACC® API Version Technical Report 24-1 2.5. Compute Constructs

2.5.5 Compute Construct Errors1196

• An acc_error_wrong_device_type error is issued if the compute construct was not1197

compiled for the current device type. This includes the case when the current device is the1198

host multicore.1199

• An acc_error_device_type_unavailable error is issued if no device of the cur-1200

rent device type is available.1201

• An acc_error_device_unavailable error is issued if the current device is not avail-1202

able.1203

• An acc_error_device_init error is issued if the current device cannot be initialized.1204

• An acc_error_execution error is issued if the execution of the compute construct on1205

the current device type fails and the failure can be detected.1206

• Explicit or implicitly determined data attributes can cause an error to be issued; see Sec-1207

tion 2.7.3.1208

• An async or wait clause can cause an error to be issued; see Sections 2.16.1 and 2.16.2.1209

See Section 5.2.2.1210

2.5.6 if clause1211

The if clause is optional.1212

When the condition in the if clause evaluates to true., the region will execute on the current device.1213

When the condition in the if clause evaluates to false, the local thread will execute the region.1214

2.5.7 self clause1215

The self clause is optional.1216

The self clause may have a single condition-argument. If the condition-argument is not present it1217

is assumed to evaluate to true. When both an if clause and a self clause appear and the condition1218

in the if clause evaluates to false, the self clause has no effect.1219

When the condition evaluates to true, the region will execute on the local device. When the condition1220

in the self clause evaluates to false, the region will execute on the current device.1221

2.5.8 async clause1222

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1223

2.5.9 wait clause1224

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1225

2.5.10 num gangs clause1226

The num_gangs clause is allowed on the parallel and kernels constructs. On a parallel1227

construct, it may have one, two, or three arguments. The values of the integer expressions define1228

37

The OpenACC® API Version Technical Report 24-1 2.5. Compute Constructs

the number of parallel gangs along dimensions one, two, and three that will execute the parallel1229

region. If it has fewer than three arguments, the missing values are treated as having the value 1.1230

The total number of gangs must be at least 1 and is the product of the values of the arguments. On a1231

kernels construct, the num_gangs clause must have a single argument, the value of which will1232

define the number of parallel gangs that will execute each kernel created for the kernels region.1233

If the num_gangs clause does not appear, an implementation-defined default will be used which1234

may depend on the code within the construct. The implementation may use a lower value than1235

specified based on limitations imposed by the target architecture.1236

2.5.11 num workers clause1237

The num_workers clause is allowed on the parallel and kernels constructs. The value1238

of the integer expression defines the number of workers within each gang that will be active after1239

a gang transitions from worker-single mode to worker-partitioned mode. If the clause does not1240

appear, an implementation-defined default will be used; the default value may be 1, and may be1241

different for each parallel construct or for each kernel created for a kernels construct. The1242

implementation may use a different value than specified based on limitations imposed by the target1243

architecture.1244

2.5.12 vector length clause1245

The vector_length clause is allowed on the parallel and kernels constructs. The value1246

of the integer expression defines the number of vector lanes that will be active after a worker transi-1247

tions from vector-single mode to vector-partitioned mode. This clause determines the vector length1248

to use for vector or SIMD operations. If the clause does not appear, an implementation-defined1249

default will be used. This vector length will be used for loop constructs annotated with the vector1250

clause, as well as loops automatically vectorized by the compiler. The implementation may use a1251

different value than specified based on limitations imposed by the target architecture.1252

2.5.13 private clause1253

The private clause is allowed on the parallel and serial constructs; it declares that a copy1254

of each item on the list will be created for each gang in all dimensions.1255

Restrictions1256

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in private1257

clauses.1258

2.5.14 firstprivate clause1259

The firstprivate clause is allowed on the parallel and serial constructs; it declares that1260

a copy of each item on the list will be created for each gang, and that the copy will be initialized with1261

the value of that item on the local thread when a parallel or serial construct is encountered.1262

Restrictions1263

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in1264

firstprivate clauses.1265

38

The OpenACC® API Version Technical Report 24-1 2.5. Compute Constructs

2.5.15 reduction clause1266

The reduction clause is allowed on the parallel and serial constructs. It specifies a1267

reduction operator and one or more vars. It implies copy clauses as described in Section 2.6.2. For1268

each reduction var, a private copy is created for each parallel gang and initialized for that operator.1269

At the end of the region, the values for each gang are combined using the reduction operator, and1270

the result combined with the value of the original var and stored in the original var. If the reduction1271

var is an array or subarray, the array reduction operation is logically equivalent to applying that1272

reduction operation to each element of the array or subarray individually. If the reduction var1273

is a composite variable, the reduction operation is logically equivalent to applying that reduction1274

operation to each member of the composite variable individually. The reduction result is available1275

after the region.1276

The following table lists the operators that are valid and the initialization values; in each case, the1277

initialization value will be cast into the data type of the var. For max and min reductions, the1278

initialization values are the least representable value and the largest representable value for that data1279

type, respectively. At a minimum, the supported data types include Fortran logical as well as1280

the numerical data types in C (e.g., _Bool, char, int, float, double, float _Complex,1281

double _Complex), C++ (e.g., bool, char, wchar_t, int, float, double), and Fortran1282

(e.g., integer, real, double precision, complex). However, for each reduction operator,1283

the supported data types include only the types permitted as operands to the corresponding operator1284

in the base language where (1) for max and min, the corresponding operator is less-than and (2) for1285

other operators, the operands and the result are the same type.1286

C and C++ Fortran

operator initialization

value

operator initialization

value

+ 0 + 0

* 1 * 1

max least max least

min largest min largest

& ˜0 iand all bits on

| 0 ior 0

ˆ 0 ieor 0

&& 1 .and. .true.

|| 0 .or. .false.

.eqv. .true.

.neqv. .false.

1287

Restrictions1288

• A var in a reduction clause must be a scalar variable name, an aggregate variable name,1289

an array element, or a subarray (refer to Section 2.7.1).1290

• If the reduction var is an array element or a subarray, accessing the elements of the array1291

outside the specified index range results in unspecified behavior.1292

• The reduction var may not be a member of a composite variable.1293

• If the reduction var is a composite variable, each member of the composite variable must be1294

a supported datatype for the reduction operation.1295

39

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in1296

reduction clauses.1297

2.5.16 default clause1298

The default clause is optional. At most one default clause may appear. It adjusts what1299

data attributes are implicitly determined for variables used in the compute construct as described in1300

Section 2.6.2.1301

2.6 Data Environment1302

This section describes the data attributes for variables. The data attributes for a variable may be1303

predetermined, implicitly determined, or explicitly determined. Variables with predetermined data1304

attributes may not appear in a data clause that conflicts with that data attribute. Variables with1305

implicitly determined data attributes may appear in a data clause that overrides the implicit attribute.1306

Variables with explicitly determined data attributes are those which appear in a data clause on a1307

data construct, a compute construct, or a declare directive. See Section A.3.3 for recommended1308

diagnostics related to data attributes.1309

OpenACC supports systems with accelerators that have discrete memory from the host, systems1310

with accelerators that share memory with the host, as well as systems where an accelerator shares1311

some memory with the host but also has some discrete memory that is not shared with the host.1312

In the first case, no data is in shared memory. In the second case, all data is in shared memory.1313

In the third case, some data may be in shared memory and some data may be in discrete memory,1314

although a single array or aggregate data structure must be allocated completely in shared or discrete1315

memory. When a nested OpenACC construct is executed on the device, the default target device for1316

that construct is the same device on which the encountering accelerator thread is executing. In that1317

case, the target device shares memory with the encountering thread.1318

Memory is considered shared memory if data residing in that memory is accessible from both the1319

host and the current device. Memory is considered device memory if it is physically connected to the1320

current device. Memory is considered device-accessible if it is accessible from the current device,1321

regardless of where the physical memory resides. A captured variable is a variable which the user1322

has specific must have a device-accessible copy that is discrete from the original, even if the original1323

is in shared memory.1324

2.6.1 Variables with Predetermined Data Attributes1325

The loop variable in a C for statement or Fortran do statement that is associated with a loop1326

directive is predetermined to be private to each thread that will execute each iteration of the loop.1327

Loop variables in Fortran do statements within a compute construct are predetermined to be private1328

to the thread that executes the loop.1329

Variables declared in a C block or Fortran block construct that is executed in vector-partitioned1330

mode are private to the thread associated with each vector lane. Variables declared in a C block1331

or Fortran block construct that is executed in worker-partitioned vector-single mode are private to1332

the worker and shared across the threads associated with the vector lanes of that worker. Variables1333

declared in a C block or Fortran block construct that is executed in worker-single mode are private1334

to the gang and shared across the threads associated with the workers and vector lanes of that gang.1335

A procedure called from a compute construct will be annotated as seq, vector, worker, or1336

40

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

gang, as described Section 2.15 Procedure Calls in Compute Regions. Variables declared in seq1337

routine are private to the thread that made the call. Variables declared in vector routine are private1338

to the worker that made the call and shared across the threads associated with the vector lanes of1339

that worker. Variables declared in worker or gang routine are private to the gang that made the1340

call and shared across the threads associated with the workers and vector lanes of that gang.1341

2.6.2 Variables with Implicitly Determined Data Attributes1342

When implicitly determining data attributes on a compute construct, the following clauses are visi-1343

ble and variable accesses are exposed to the compute construct:1344

• Visible default clause: The nearest default clause appearing on the compute construct1345

or on a lexically enclosing data construct that has the same parent compute scope.1346

• Visible data clause: Any data clause on the compute construct, on a lexically enclosing data1347

construct that has the same parent compute scope, or on a visible declare directive.1348

• Exposed variable access: Any access to the data or address of a variable at a point within the1349

compute construct where the variable is not private to a scope lexically enclosed within the1350

compute construct.1351

Note: In the argument of C’s sizeof operator, the appearance of a variable is not an exposed1352

access because neither its data nor its address is accessed. In the argument of a reduction1353

clause on an enclosed loop construct, the appearance of a variable that is not otherwise1354

privatized is an exposed access to the original variable.1355

On a compute or combined construct, if a variable appears in a reduction clause but no other1356

data clause, it is treated as if it also appears in a copy clause. Otherwise, for any variable, the1357

compiler will implicitly determine its data attribute on a compute construct if all of the following1358

conditions are met:1359

• There is no default(none) clause visible at the compute construct.1360

• An access to the variable is exposed to the compute construct.1361

• The variable does not appear in a data clause visible at the compute construct.1362

An aggregate variable will be treated as if it appears either:1363

• In a present clause if there is a default(present) clause visible at the compute con-1364

struct.1365

• In a copy clause otherwise.1366

A scalar variable will be treated as if it appears either:1367

• In a copy clause if the compute construct is a kernels construct.1368

• In a firstprivate clause otherwise.1369

Note: Any default(none) clause visible at the compute construct applies to both aggregate1370

and scalar variables. However, any default(present) clause visible at the compute construct1371

applies only to aggregate variables.1372

41

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

Restrictions1373

• If there is a default(none) clause visible at a compute construct, for any variable access1374

exposed to the compute construct, the compiler requires the variable to appear either in an1375

explicit data clause visible at the compute construct or in a firstprivate, private, or1376

reduction clause on the compute construct.1377

• If a scalar variable appears in a reduction clause on a loop construct that has a parent1378

parallel or serial construct, and if the reduction’s access to the original variable is1379

exposed to the parent compute construct, the variable must appear either in an explicit data1380

clause visible at the compute construct or in a firstprivate, private, or reduction1381

clause on the compute construct. Note: Implementations are encouraged to issue a compile-1382

time diagnostic when this restriction is violated to assist users in writing portable OpenACC1383

applications.1384

If a C++ lambda is called in a compute region and does not appear in a data clause, then it is1385

treated as if it appears in a copyin clause on the current construct. A variable captured by a1386

lambda is processed according to its data types: a pointer type variable is treated as if it appears1387

in a no_create clause; a reference type variable is treated as if it appears in a present clause;1388

for a struct or a class type variable, any pointer member is treated as if it appears in a no_create1389

clause on the current construct. If the variable is defined as global or file or function static, it must1390

appear in a declare directive.1391

2.6.3 Data Regions and Data Lifetimes1392

Data in shared memory is accessible from the current device as well as to the local thread. Such1393

data is available to the accelerator for the lifetime of the variable. Data not in shared memory must1394

be copied to and from device memory using data constructs, clauses, and API routines. A data1395

lifetime is the duration from when the data is first made available to the accelerator until it becomes1396

unavailable. For data in shared memory, the data lifetime begins when the data is allocated and1397

ends when it is deallocated; for statically allocated data, the data lifetime begins when the program1398

begins and does not end. For data not in shared memory, the data lifetime begins when it is made1399

present and ends when it is no longer present.1400

There are four types of data regions. When the program encounters a data construct, it creates a1401

data region.1402

When the program encounters a compute construct with explicit data clauses or with implicit data1403

allocation added by the compiler, it creates a data region that has a duration of the compute construct.1404

When the program enters a procedure, it creates an implicit data region that has a duration of the1405

procedure. That is, the implicit data region is created when the procedure is called, and exited when1406

the program returns from that procedure invocation. There is also an implicit data region associated1407

with the execution of the program itself. The implicit program data region has a duration of the1408

execution of the program.1409

In addition to data regions, a program may create and delete data on the accelerator using enter1410

data and exit data directives or using runtime API routines. When the program executes1411

an enter data directive, or executes a call to a runtime API acc_copyin or acc_create1412

routine, each var on the directive or the variable on the runtime API argument list will be made live1413

on accelerator.1414

42

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

2.6.4 Data Structures with Pointers1415

This section describes the behavior of data structures that contain pointers. A pointer may be a1416

C or C++ pointer (e.g., float*), a Fortran pointer or array pointer (e.g., real, pointer,1417

dimension(:)), or a Fortran allocatable (e.g., real, allocatable, dimension(:)).1418

When a data object is copied to device memory, the values are copied exactly. If the data is a data1419

structure that includes a pointer, or is just a pointer, the pointer value copied to device memory1420

will be the host pointer value. If the pointer target object is also allocated in or copied to device1421

memory, the pointer itself needs to be updated with the device address of the target object before1422

dereferencing the pointer in device memory.1423

An attach action updates the pointer in device memory to point to the device copy of the data that1424

the host pointer targets; see Section 2.7.2. For Fortran array pointers and allocatable arrays, this1425

includes copying any associated descriptor (dope vector) to the device copy of the pointer. When1426

the device pointer target is deallocated, the pointer in device memory is restored to the host value, so1427

it can be safely copied back to host memory. A detach action updates the pointer in device memory1428

to have the same value as the corresponding pointer in local memory; see Section 2.7.2. The attach1429

and detach actions are performed by the copy, copyin, copyout, create, attach, and1430

detach data clauses (Sections 2.7.5-2.7.14), and the acc_attach and acc_detach runtime1431

API routines (Section 3.2.29). The attach and detach actions use attachment counters to determine1432

when the pointer in device memory needs to be updated; see Section 2.6.8.1433

2.6.5 Data Construct1434

Summary1435

The data construct defines vars are accessible to the current device for the duration of the region.1436

It also defines the data actions that occur upon entry to and exit from the region.1437

Syntax1438

In C and C++, the syntax of the OpenACC data construct is1439

#pragma acc data [clause-list] new-line1440

structured block1441

and in Fortran, the syntax is1442

!$acc data [clause-list]1443

structured block1444

!$acc end data1445

or1446

!$acc data [clause-list]1447

block construct1448

[!$acc end data]1449

where clause is one of the following:1450

if(condition)1451

async [(int-expr)]1452

wait [(wait-argument)]1453

device_type(device-type-list)1454

43

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

copy([modifier-list :] var-list)1455

copyin([modifier-list :] var-list)1456

copyout([modifier-list :] var-list)1457

create([modifier-list :] var-list)1458

no_create(var-list)1459

present(var-list)1460

deviceptr(var-list)1461

attach(var-list)1462

default(none | present)1463

Description1464

Data will be allocated in the memory of the current device and copied from local memory to device1465

memory, or copied back, as required. The data clauses are described in Section 2.7 Data Clauses.1466

Structured reference counters are incremented for data when entering a data region, and decre-1467

mented when leaving the region, as described in Section 2.6.7 Reference Counters. The device_type1468

clause is described in Section 2.4 Device-Specific Clauses.1469

Restrictions1470

• At least one copy, copyin, copyout, create, no_create, present, deviceptr,1471

attach, or default clause must appear on a data construct.1472

• Only the async and wait clauses may follow a device_type clause.1473

if clause1474

The if clause is optional; when there is no if clause, the compiler will generate code to allocate1475

space in the current device memory and move data from and to the local memory as required. When1476

an if clause appears, the program will conditionally allocate memory in and move data to and/or1477

from device memory. When the condition in the if clause evaluates to false, no device memory1478

will be allocated, and no data will be moved. When the condition evaluates to true, the data will be1479

allocated and moved as specified. At most one if clause may appear.1480

async clause1481

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1482

Note: The async clause only affects operations directly associated with this particular data con-1483

struct, such as data transfers. Execution of the associated structured block or block construct remains1484

synchronous to the local thread. Nested OpenACC constructs, directives, and calls to runtime li-1485

brary routines do not inherit the async clause from this construct, and the programmer must take1486

care to not accidentally introduce race conditions related to asynchronous data transfers.1487

wait clause1488

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1489

default clause1490

The default clause is optional. At most one default clause may appear. It adjusts what data1491

attributes are implicitly determined for variables used in lexically contained compute constructs as1492

described in Section 2.6.2.1493

44

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

Errors1494

• See Section 2.7.3 for errors due to data clauses.1495

• See Sections 2.16.1 and 2.16.2 for errors due to async or wait clauses.1496

2.6.6 Enter Data and Exit Data Directives1497

Summary1498

An enter data directive defines vars are accessible to the current device for the remaining dura-1499

tion of the program, or until an exit data directive makes the data no longer accessible. These1500

directives also specify data actions which occur upon reaching the enter data or exit data di-1501

rective. The dynamic data lifetime for data referred to by an enter data or exit data directive1502

is defined by its dynamic reference counter, as defined in Section 2.6.7.1503

Syntax1504

In C and C++, the syntax of the OpenACC enter data directive is1505

#pragma acc enter data clause-list new-line1506

and in Fortran, the syntax is1507

!$acc enter data clause-list1508

where clause is one of the following:1509

if(condition)1510

async [(int-expr)]1511

wait [(wait-argument)]1512

copyin([modifier-list :] var-list)1513

create([modifier-list :] var-list)1514

attach(var-list)1515

In C and C++, the syntax of the OpenACC exit data directive is1516

#pragma acc exit data clause-list new-line1517

and in Fortran, the syntax is1518

!$acc exit data clause-list1519

where clause is one of the following:1520

if(condition)1521

async [(int-expr)]1522

wait [(wait-argument)]1523

copyout([modifier-list :] var-list)1524

delete(var-list)1525

detach(var-list)1526

finalize1527

Description1528

At an enter data directive, data may be allocated in the current device memory and copied from1529

local memory to device memory. This action enters a data lifetime for those vars, and will make1530

the data available for present clauses on constructs within the data lifetime. Dynamic reference1531

45

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

counters are incremented for this data, as described in Section 2.6.7 Reference Counters. Pointers1532

in device memory may be attached to point to the corresponding device copy of the host pointer1533

target.1534

At an exit data directive, data may be copied from device memory to local memory and deal-1535

located from device memory. If no finalize clause appears, dynamic reference counters are1536

decremented for this data. If a finalize clause appears, the dynamic reference counters are set1537

to zero for this data. Pointers in device memory may be detached so as to have the same value as1538

the original host pointer.1539

The data clauses are described in Section 2.7 Data Clauses. Reference counting behavior is de-1540

scribed in Section 2.6.7 Reference Counters.1541

Restrictions1542

• At least one copyin, create, or attach clause must appear on an enter data direc-1543

tive.1544

• At least one copyout, delete, or detach clause must appear on an exit data direc-1545

tive.1546

if clause1547

The if clause is optional; when there is no if clause, the compiler will generate code to allocate or1548

deallocate space in the current device memory and move data from and to local memory. When an1549

if clause appears, the program will conditionally allocate or deallocate device memory and move1550

data to and/or from device memory. When the condition in the if clause evaluates to false, no1551

device memory will be allocated or deallocated, and no data will be moved. When the condition1552

evaluates to true, the data will be allocated or deallocated and moved as specified.1553

async clause1554

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1555

wait clause1556

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1557

finalize clause1558

The finalize clause is allowed on the exit data directive and is optional. When no finalize1559

clause appears, the exit data directive will decrement the dynamic reference counters for vars1560

appearing in copyout and delete clauses, and will decrement the attachment counters for point-1561

ers appearing in detach clauses. If a finalize clause appears, the exit data directive will1562

set the dynamic reference counters to zero for vars appearing in copyout and delete clauses,1563

and will set the attachment counters to zero for pointers appearing in detach clauses.1564

Errors1565

• See Section 2.7.3 for errors due to data clauses.1566

• See Sections 2.16.1 and 2.16.2 for errors due to async or wait clauses.1567

46

The OpenACC® API Version Technical Report 24-1 2.6. Data Environment

2.6.7 Reference Counters1568

When device memory is allocated for data not in shared memory due to data clauses or OpenACC1569

API routine calls, the OpenACC implementation keeps track of that section of device memory and1570

its relationship to the corresponding data in host memory.1571

Each section of device memory is associated with two reference counters per device, a structured1572

reference counter and a dynamic reference counter. The structured and dynamic reference counters1573

are used to determine when to allocate or deallocate data in device memory. The structured reference1574

counter for a section of memory keeps track of how many nested data regions have been entered for1575

that data. The initial value of the structured reference counter for static data in device memory (in a1576

global declare directive) is one; for all other data, the initial value is zero. The dynamic reference1577

counter for a section of memory keeps track of how many dynamic data lifetimes are currently active1578

in device memory for that section. The initial value of the dynamic reference counter is zero. Data1579

is considered present if the sum of the structured and dynamic reference counters is greater than1580

zero.1581

A structured reference counter is incremented when entering each data or compute region that con-1582

tain an explicit data clause or implicitly-determined data attributes for that section of memory, and1583

is decremented when exiting that region. A dynamic reference counter is incremented for each1584

enter data copyin or create clause, or each acc_copyin or acc_create API routine1585

call for that section of memory. The dynamic reference counter is decremented for each exit1586

data copyout or delete clause when no finalize clause appears, or each acc_copyout1587

or acc_delete API routine call for that section of memory. The dynamic reference counter will1588

be set to zero with an exit data copyout or delete clause when a finalize clause ap-1589

pears, or each acc_copyout_finalize or acc_delete_finalize API routine call for1590

the section of memory. The reference counters are modified synchronously with the local thread,1591

even if the data directives include an async clause. When both structured and dynamic reference1592

counters reach zero, the data lifetime in device memory for that data ends.1593

Memory mapped by acc_map_data may not have the associated dynamic reference count decre-1594

mented to zero, except by a call to acc_unmap_data.1595

2.6.8 Attachment Counter1596

Since multiple pointers can target the same address, each pointer in device memory is associated1597

with an attachment counter per device. The attachment counter for a pointer is initialized to zero1598

when the pointer is allocated in device memory. The attachment counter for a pointer is set to one1599

whenever the pointer is attached to new target address, and incremented whenever an attach action1600

for that pointer is performed for the same target address. The attachment counter is decremented1601

whenever a detach action occurs for the pointer, and the pointer is detached when the attachment1602

counter reaches zero. This is described in more detail in Section 2.7.2 Data Clause Actions.1603

A pointer in device memory can be assigned a device address in two ways. The pointer can be1604

attached to a device address due to data clauses or API routines, as described in Section 2.7.21605

Data Clause Actions, or the pointer can be assigned in a compute region executed on that device.1606

Unspecified behavior may result if both ways are used for the same pointer.1607

Pointer members of structs, classes, or derived types in device or host memory can be overwritten1608

due to update directives or API routines. It is the user’s responsibility to ensure that the pointers1609

have the appropriate values before or after the data movement in either direction. The behavior of1610

47

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

the program is undefined if any of the pointer members are attached when an update of a composite1611

variable is performed.1612

2.7 Data Clauses1613

Data clauses may appear on the parallel construct, serial construct, kernels construct,1614

data construct, the enter data and exit data directives, and declare directives. In the1615

descriptions, the region is a compute region with a clause appearing on a parallel, serial, or1616

kernels construct, a data region with a clause on a data construct, or an implicit data region1617

with a clause on a declare directive. If the declare directive appears in a global context,1618

the corresponding implicit data region has a duration of the program. The list argument to each1619

data clause is a comma-separated collection of vars. On a declare directive, the list argument1620

of a copyin, create, device_resident, or link clause may include a Fortran common1621

block name enclosed within slashes. On any directive, for any clause except deviceptr and1622

present, the list argument may include a Fortran common block name enclosed within slashes1623

if that common block name also appears in a declare directive link clause. In all cases, the1624

compiler will allocate and manage a copy of the var in the memory of the current device, creating a1625

visible device copy of that var, for data not in shared memory.1626

OpenACC supports accelerators with discrete memories from the local thread. However, if the1627

accelerator can access the local memory directly, the implementation may avoid the memory allo-1628

cation and data movement and simply share the data in local memory unless an explicit copy in1629

device-accessible memory is specified. Therefore, a program that uses and assigns data on the host1630

and uses and assigns the same data on the accelerator within a data region without update directives1631

to manage the coherence of the two copies may get different answers on different accelerators or1632

implementations.1633

Restrictions1634

• Data clauses may not follow a device_type clause.1635

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in data1636

clauses.1637

2.7.1 Data Specification in Data Clauses1638

In C and C++, a subarray is an array name followed by an extended array range specification in1639

brackets, with start and length, such as1640

AA[2:n]1641

If the lower bound is missing, zero is used. If the length is missing and the array has known size, the1642

size of the array is used; otherwise the length is required. The subarray AA[2:n] means elements1643

AA[2], AA[3], . . . , AA[2+n-1].1644

In C and C++, a two dimensional array may be declared in at least four ways:1645

• Statically-sized array: float AA[100][200];1646

• Pointer to statically sized rows: typedef float row[200]; row* BB;1647

• Statically-sized array of pointers: float* CC[200];1648

• Pointer to pointers: float** DD;1649

48

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

Each dimension may be statically sized, or a pointer to dynamically allocated memory. Each of1650

these may be included in a data clause using subarray notation to specify a rectangular array:1651

• AA[2:n][0:200]1652

• BB[2:n][0:m]1653

• CC[2:n][0:m]1654

• DD[2:n][0:m]1655

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any com-1656

bination of statically-sized or dynamically-allocated dimensions. For statically sized dimensions, all1657

dimensions except the first must specify the whole extent to preserve the contiguous data restriction,1658

discussed below. For dynamically allocated dimensions, the implementation will allocate pointers1659

in device memory corresponding to the pointers in local memory and will fill in those pointers as1660

appropriate.1661

In Fortran, a subarray is an array name followed by a comma-separated list of range specifications1662

in parentheses, with lower and upper bound subscripts, such as1663

arr(1:high,low:100)1664

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, if1665

known, are used. All dimensions except the last must specify the whole extent, to preserve the1666

contiguous data restriction, discussed below.1667

Restrictions1668

• In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be1669

specified.1670

• In C and C++, the length for dynamically allocated dimensions of an array must be explicitly1671

specified.1672

• In C and C++, modifying pointers in pointer arrays during the data lifetime, either on the host1673

or on the device, may result in undefined behavior.1674

• If a subarray appears in a data clause, the implementation may choose to allocate memory for1675

only that subarray on the accelerator.1676

• In Fortran, array pointers may appear, but pointer association is not preserved in device mem-1677

ory.1678

• Any array or subarray in a data clause, including Fortran array pointers, must be a contiguous1679

section of memory, except for dynamic multidimensional C arrays.1680

• In C and C++, if a variable or array of composite type appears, all the data members of the1681

struct or class are allocated and copied, as appropriate. If a composite member is a pointer1682

type, the data addressed by that pointer are not implicitly copied.1683

• In Fortran, if a variable or array of composite type appears, all the members of that derived1684

type are allocated and copied, as appropriate. If any member has the allocatable or1685

pointer attribute, the data accessed through that member are not copied.1686

49

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

• If an expression is used in a subscript or subarray expression in a clause on a data construct,1687

the same value is used when copying data at the end of the data region, even if the values of1688

variables in the expression change during the data region.1689

2.7.2 Data Clause Actions1690

Data clauses perform one or more the following actions.1691

Increment Counter Action1692

An increment counter action is one of the actions that may be performed for a present (Section1693

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1694

tion 2.7.10), no_create (Section 2.7.11), or attach (Section 2.7.13) clause, or for a call to an1695

acc_copyin, acc_create, or acc_attach API routine (Sections 3.2.18 and 3.2.29). See1696

those sections for details.1697

An increment counter action for a var increments the structured or dynamic reference counter or1698

the attachment counter for var by one.1699

Decrement Counter Action1700

A decrement counter action is one of the actions that may be performed for a present (Section1701

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1702

tion 2.7.10), no_create (Section 2.7.11), delete (Section 2.7.12), attach (Section 2.7.13), or1703

detach clause, or for a call to an acc_copyout, acc_delete, or acc_detach API routine1704

(Sections 3.2.19 and ??). See those sections for details.1705

A decrement counter action for a var decrements the structured or dynamic reference counter or1706

the attachment counter for var by one. If the reference counter is already zero, its value is left1707

unchanged.1708

If the device memory associated with var was mapped to the device using acc_map_data, the1709

dynamic reference count may not be decremented to zero, except by a call to acc_unmap_data.1710

Reset Counter Action1711

A reset counter action is one of the actions that may be performed for a copyout (Section 2.7.9),1712

delete (Section 2.7.12), or detach (Section 2.7.14) clause, or for a call to an acc_copyout,1713

acc_delete, or acc_detach API routine (Sections 3.2.19 and 3.2.29). See those sections for1714

details.1715

A reset counter action for a var sets the structured or dynamic reference counter or attachment1716

counter for var to zero.1717

Allocate Memory Action1718

An allocate memory action is one of the actions that may be performed for a copy (Section 2.7.7),1719

copyin (Section 2.7.8), copyout (Section 2.7.9) or create (Section 2.7.10) clause, or for a call1720

to an acc_copyin or acc_create API routine (Section 3.2.18). See those sections for details.1721

An allocate memory action for a var allocates device-accessible memory for var. If device memory1722

is unavailable, shared memory is allocated. If shared memory is unavailable, device memory is1723

50

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

allocated. When both shared and device memory are available, the choice of memory allocated is1724

implementation-defined.1725

Deallocate Memory Action1726

A deallocate memory action is one of the actions that may be performed for a copy (Section 2.7.8),1727

copyin (Section 2.7.8), copyout (Section 2.7.8), create (Section 2.7.10), no_create (Sec-1728

tion 2.7.11), or delete (Section 2.7.12) clause, or for a call to an acc_copyout or acc_delete1729

API routine (Section 3.2.19). See those sections for details.1730

A deallocate memory action for var deallocates device-accessible memory for var.1731

Transfer In Action1732

A transfer in action is one of the actions that may be performed for a copy (Section 2.7.7) or1733

copyin (Section 2.7.8) clause, update (Section 2.14.4) directive, or for a call to an acc_copyin1734

or acc_update_deviceAPI routine (Sections 3.2.18 and 3.2.20). See those sections for details.1735

A transfer in action for a var initiates a transfer of the data for var from the local thread memory to1736

the corresponding device-accessible memory.1737

The data copy may occur asynchronously, depending on other clauses on the directive.1738

Transfer Out Action1739

A transfer out action is one of the actions that may be performed for a copy (Section 2.7.7) or1740

copyout (Section 2.7.9) clause, update (Section 2.14.4) directive, or for a call to an acc_copyout1741

or acc_update_self API routine (Sections 3.2.19 and 3.2.20). See those sections for details.1742

A transfer out action for a var initiates a transfer of the data for var from device-accesible memory1743

to the corresponding local thread memory.1744

The data copy may occur asynchronously, depending on other clauses on the directive, in which1745

case the memory is deallocated when the data copy is complete.1746

Attach Pointer Action1747

An attach pointer action is one of the actions that may be performed for a present (Section1748

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1749

tion 2.7.10), no_create (Section 2.7.11), or attach (Section 2.7.12) clause, or for a call to an1750

acc_attach API routine (Section 3.2.29). See those sections for details.1751

An attach pointer action for a var occurs only when var is a pointer reference.1752

If the pointer var is in shared memory and it is not a captured variable or is not present in the current1753

device-accessible memory, or if the address to which var points is not present in the current device-1754

accessible memory, no action is taken. If the pointer is a null pointer, the pointer in device-accessible1755

memory is updated to have the same value. Otherwise, the pointer in device-accessible memory is1756

updated to point to the corresponding copy of the data. The update may occur asynchronously,1757

depending on other clauses on the directive. The implementation schedules pointer updates after1758

any data transfers due to transfer in actions that are performed for the same directive.1759

51

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

Detach Pointer Action1760

A detach pointer action is one of the actions that may be performed for a present (Section1761

2.7.6), copy (Section 2.7.7), copyin (Section 2.7.8), copyout (Section 2.7.9), create (Sec-1762

tion 2.7.10), no_create (Section 2.7.11), delete (Section 2.7.12), or attach (Section 2.7.13),1763

or detach (Section 2.7.12) clause, or for a call to an acc_detach API routine (Section 3.2.29).1764

See those sections for details.1765

A detach pointer action for a var occurs only when var is a pointer reference.1766

If the pointer var is in shared memory and is not a captured variable or is not present in the current1767

device-accessible memory, or if the attachment counter for var for the pointer is not zero, no action1768

is taken. The var in device-accessible memory is updated to have the same value as the correspond-1769

ing pointer in local memory. The update may occur asynchronously, depending on other clauses1770

on the directive. The implementation schedules pointer updates before any data transfers due to1771

transfer out actions that are performed for the same directive.1772

2.7.3 Data Clause Errors1773

An error is issued for a var that appears in a copy, copyin, copyout, create, and delete1774

clause as follows:1775

• An acc_error_partly_present error is issued if part of var is present in device-1776

accessible memory of the current device but all of var is not.1777

• An acc_error_invalid_data_section error is issued if var is a Fortran subarray1778

with a stride that is not one.1779

• An acc_error_out_of_memory error is issued if the accelerator device does not have1780

enough memory for var.1781

An error is issued for a var that appears in a present clause as follows:1782

• An acc_error_not_present error is issued if var is not present in the current device1783

memory at entry to a data or compute construct.1784

• An acc_error_partly_present error is issued if part of var is present in device-1785

accessible memory of the current device but all of var is not.1786

See Section 5.2.2.1787

2.7.4 Data Clause Modifiers1788

Some clauses allow an optional modifier list, with the following supported modifiers:1789

• always indicating that the data transfer in and transfer out actions must always occur even1790

if the data is present in the device.1791

• alwaysin indicating that the data transfer in action must always occur even if the data is1792

present in the device.1793

• alwaysout indicating that the data transfer out action must always occur even if the data is1794

present in the device.1795

52

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

• capture indicating that the implementation must capture the variables in the clause with a1796

distinct copy of such variables created in the device-accessible memory even if the original1797

variable is already in accessible shared memory.1798

• readonly indicating that the data in the data region are only read and not written.1799

• zero indicating that the implementation must zero-initialise the variables in the clause.1800

2.7.5 deviceptr clause1801

The deviceptr clause may appear on structured data and compute constructs and declare1802

directives.1803

The deviceptr clause is used to declare that the pointers in var-list are device-accessible pointers,1804

so the data need not be allocated or moved between the host and device for this pointer.1805

In C and C++, the vars in var-list must be pointer variables.1806

In Fortran, the vars in var-list must be dummy arguments (arrays or scalars), and may not have the1807

Fortran pointer, allocatable, or value attributes.1808

For data in shared memory, host pointers are the same as device pointers, so this clause has no1809

effect.1810

2.7.6 present clause1811

The present clause may appear on structured data and compute constructs and declare di-1812

rectives. The present clause specifies that vars in var-list are in shared memory or are already1813

present in the current device memory due to data regions or data lifetimes that contain the construct1814

on which the present clause appears.1815

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is1816

taken; otherwise, the present clause behaves as follows:1817

• At entry to the region:1818

1. If var is a pointer reference,1819

a) If the attachment counter for var is zero, an attach pointer action is performed.1820

b) An increment counter action is performed with the associated attachment counter.1821

2. An increment counter action is performed with the associated structured reference counter.1822

• At exit from the region:1823

1. If the structured reference counter for var is zero, no action is taken.1824

2. Otherwise,1825

a) If var is a pointer reference,1826

i. A decrement counter action is performed with the associated attachment counter.1827

ii. If the attachment counter for var is now zero, a detach pointer action is per-1828

formed.1829

53

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

b) A decrement counter action is performed with the associate structured reference1830

counter.1831

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1832

2.7.7 copy clause1833

The copy clause may appear on structured data and compute constructs and on declare direc-1834

tives.1835

Only the following modifiers may appear in the optional modifier-list: always, alwaysin, alwaysout1836

or capture.1837

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1838

capture modifier, no action is taken; otherwise, the copy clause behaves as follows:1839

• At entry to the region:1840

1. If var is not present and is not a null pointer, an allocate memory action is performed. If1841

a zero modifier appears, the memory is initialized to zero.1842

2. If var is not present or if an always or alwaysin modifier appears, a transfer in1843

action is performed.1844

3. An increment counter action is performed with the associated structured reference counter.1845

4. If var is a pointer reference, an attach pointer action is performed, followed by an1846

increment counter action on the associated attachment counter.1847

• At exit from the region:1848

– If the structured reference counter for var is zero, no action is taken.1849

– Otherwise,1850

1. If var is a pointer reference, a decrement counter action is performed with the as-1851

sociated attachment counter1852

2. If the associated attachment counter is now zero, a detach pointer action is per-1853

formed.1854

3. A decrement counter action is performed with the structured associated reference1855

counter.1856

4. If both structured and dynamic reference counters are now zero or if an always1857

or alwaysout modifier appears, a transfer out action is performed.1858

5. If both structured and dynamic reference counters are now zero, a deallocate memory1859

action is performed.1860

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1861

For compatibility with OpenACC 2.0, present_or_copy and pcopy are alternate names for1862

copy.1863

54

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

2.7.8 copyin clause1864

The copyin clause may appear on structured data and compute constructs, on declare direc-1865

tives, and on enter data directives.1866

Only the following modifiers may appear in the optional modifier-list: always, alwaysin or readonly.1867

Additionally, on structured data and compute constructs capture modifier may appear.1868

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1869

capture modifier, no action is taken; otherwise, the copyin clause behaves as follows:1870

• At entry to a region, the structured reference counter is used. On an enter data directive,1871

the dynamic reference counter is used.1872

1. If var is not present and is not a null pointer, an allocate memory action is performed.1873

2. If var is not present or if an always or alwaysin modifier appears, a transfer in1874

action is performed.1875

3. If var is a pointer reference, an attach pointer action is performed followed by an1876

increment counter action with the associated attachment counter.1877

4. An increment counter action is performed with the appropriate associated reference1878

counter.1879

• At exit from the region:1880

– If the structured reference counter for var is zero, no action is taken.1881

– Otherwise,1882

1. If var is a pointer reference, a decrement counter action is performed on the asso-1883

ciated attachment counter.1884

2. If var is a pointer reference and the associated attachment counter is now zero, a1885

detach pointer action is performed.1886

3. A decrement counter action is performed with the associated structured reference1887

counter.1888

4. If both structured and dynamic reference counters are now zero, a deallocate memory1889

action is performed.1890

If the optional readonly modifier appears, then the implementation may assume that the data1891

referenced by var-list is never written to within the applicable region.1892

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1893

For compatibility with OpenACC 2.0, present_or_copyin and pcopyin are alternate names1894

for copyin.1895

An enter data directive with a copyin clause is functionally equivalent to a call to the acc_copyin1896

API routine, as described in Section 3.2.18.1897

55

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

2.7.9 copyout clause1898

The copyout clause may appear on structured data and compute constructs, on declare di-1899

rectives, and on exit data directives. The clause may optionally have a zero modifier if the1900

copyout clause appears on a structured data or compute construct.1901

Only the following modifiers may appear in the optional modifier-list: always, alwaysin or zero.1902

Additionally, on structured data and compute constructs capture modifier may appear.1903

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1904

capture modifier, no action is taken; otherwise, the copyout clause behaves as follows:1905

• At entry to a region:1906

1. If var is not present and is not a null pointer, an allocate memory action is performed. If1907

a zero modifier appears, the memory is initialized to zero.1908

2. If var is a pointer reference, an attach pointer action is performed, followed by an1909

increment counter action on the associated attachment counter.1910

3. An increment counter action is performed with the associated structured reference counter.1911

• At exit from a region, the structured reference counter is used. On an exit data directive,1912

the dynamic reference counter is used.1913

– If the appropriate reference counter for var is zero, no action is taken.1914

– Otherwise,1915

1. If var is a pointer reference, a decrement counter action is performed on the asso-1916

ciated attachment counter.1917

2. If var is a pointer reference and the associated attachment counter is now zero, a1918

detach pointer action is performed.1919

3. The reference count is updated as follows:1920

* On an exit data directive with a finalize clause, a reset counter action1921

is performed to the dynamic reference.1922

* Otherwise, a decrement counter action is performed with the appropriate asso-1923

ciated reference counter.1924

4. If both structured and dynamic reference counters are now zero or an always or1925

alwaysout modifier appears, a transfer out action is performed.1926

5. If both structured and dynamic reference counters are now zero, a deallocate memory1927

action is performed.1928

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1929

For compatibility with OpenACC 2.0, present_or_copyout and pcopyout are alternate1930

names for copyout.1931

An exit data directive with a copyout clause and with or without a finalize clause is func-1932

tionally equivalent to a call to the acc_copyout_finalize or acc_copyout API routine,1933

respectively, as described in Section 3.2.19.1934

56

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

2.7.10 create clause1935

The create clause may appear on structured data and compute constructs, on declare direc-1936

tives, and on enter data directives.1937

Only the following modifiers may appear in the optional modifier-list: zero. Additionally, on struc-1938

tured data and compute constructs capture modifier may appear.1939

For each var in var-list, if var is in shared memory and it is not a captured variable and has no1940

capture modifier, no action is taken; otherwise, the create clause behaves as follows:1941

• At entry to a region, the structured reference counter is used. On an enter data directive,1942

the dynamic reference counter is used.1943

1. If var is not present and is not a null pointer, an allocate memory action is performed. If1944

a zero modifier appears, the memory is initialized to zero.1945

2. If var is a pointer reference, an attach pointer action is performed, followed by an1946

increment counter action on the associated attachment counter.1947

3. An increment counter action is performed on the appropriate associated reference counter.1948

• At exit from the region:1949

– If the structured reference counter for var is zero, no action is taken.1950

– Otherwise,1951

1. If var is a pointer reference, a decrement counter action is performed on the asso-1952

ciated attachment counter.1953

2. If var is a pointer reference and the associated attachment counter is now zero, a1954

detach pointer action is performed.1955

3. A decrement counter action is performed with the associated structured reference1956

counter.1957

4. If both structured and dynamic reference counters are zero, a deallocate memory1958

action is performed.1959

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1960

For compatibility with OpenACC 2.0, present_or_create and pcreate are alternate names1961

for create.1962

An enter data directive with a create clause is functionally equivalent to a call to the acc_create1963

API routine, as described in Section 3.2.18, except the directive may perform an attach action for a1964

pointer reference.1965

2.7.11 no create clause1966

The no_create clause may appear on structured data and compute constructs.1967

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is1968

taken; otherwise, the no_create clause behaves as follows:1969

• At entry to the region:1970

57

The OpenACC® API Version Technical Report 24-1 2.7. Data Clauses

– If var is present and is not a null pointer, an increment counter action is performed with1971

the structured reference counter.1972

– If var is present and is a pointer reference,1973

1. an increment counter action is performed on the associated attachment counter,1974

2. and if the associated attachment counter is now one, an attach pointer action is1975

performed.1976

– If var is not present, no action is performed, and any device code in this construct will1977

use the local memory address for var.1978

• At exit from the region:1979

– If the structured reference counter for var is zero or var is a null pointer, no action is1980

taken.1981

– Otherwise,1982

1. If var is a pointer reference,1983

a) a decrement counter action is performed on the associated attachment counter,1984

b) and if the associated attachment counter is now zero, a detach pointer action is1985

performed.1986

2. A decrement counter action is performed with the structured reference counter.1987

3. If both structured and dynamic reference counters are zero, a deallocate memory1988

action is performed.1989

2.7.12 delete clause1990

The delete clause may appear on exit data directives.1991

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is1992

taken; otherwise, the delete clause behaves as follows:1993

• If the dynamic reference counter for var is zero, no action is taken.1994

• Otherwise,1995

1. If var is a pointer reference,1996

a) a decrement counter action is performed on the associated attachment counter,1997

b) and if the associated attachment counter is now zero, a detach pointer action is1998

performed.1999

2. If var is not a null pointer, the dynamic reference counter is updated, as follows:2000

– On an exit data directive with a finalize clause, a reset counter action is2001

performed on the associated dynamic reference counter.2002

– Otherwise, a decrement counter action is performed with the associated dynamic2003

reference counter.2004

58

The OpenACC® API Version Technical Report 24-1 2.8. Host Data Construct

3. If both structured and dynamic reference counters are now zero, a deallocate memory2005

action is performed.2006

An exit data directive with a delete clause and with or without a finalize clause is func-2007

tionally equivalent to a call to the acc_delete_finalize or acc_delete API routine, re-2008

spectively, as described in Section 3.2.19.2009

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.2010

2.7.13 attach clause2011

The attach clause may appear on structured data and compute constructs and on enter data2012

directives. Each var argument to an attach clause must be a C or C++ pointer or a Fortran variable2013

or array with the pointer or allocatable attribute.2014

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is2015

taken; otherwise, the attach clause behaves as follows:2016

• At entry to a region or at an enter data directive, an attach pointer action is performed2017

followed by an increment counter action with the associated attachment counter.2018

• At exit from the region,2019

1. a decrement counter action is performed with the associated attachment counter,2020

2. and if the associated attachment counter is now zero, a detach pointer action is per-2021

formed.2022

2.7.14 detach clause2023

The detach clause may appear on exit data directives. Each var argument to a detach clause2024

must be a C or C++ pointer or a Fortran variable or array with the pointer or allocatable2025

attribute.2026

For each var in var-list, if var is in shared memory and it is not a captured variable, no action is2027

taken; otherwise, the detach clause behaves as follows:2028

• If there is a finalize clause on the exit data directive, a reset counter action with the2029

attachment counter is performed. Otherwise, a decrement counter action is performed with2030

the associated attachment counter.2031

• If the attachment counter is now zero, a detach pointer action is performed.2032

2.8 Host Data Construct2033

Summary2034

The host_data construct makes the address of data in device-accessible memory available on the2035

host.2036

Syntax2037

In C and C++, the syntax of the OpenACC host_data construct is2038

#pragma acc host_data clause-list new-line2039

structured block2040

59

The OpenACC® API Version Technical Report 24-1 2.8. Host Data Construct

and in Fortran, the syntax is2041

!$acc host_data clause-list2042

structured block2043

!$acc end host_data2044

or2045

!$acc host_data clause-list2046

block construct2047

[!$acc end host_data]2048

where clause is one of the following:2049

use_device(var-list)2050

if(condition)2051

if_present2052

Description2053

This construct is used to make the address of data in device-accessible memory available in host2054

code.2055

Restrictions2056

• A var in a use_device clause must be the name of a variable or array.2057

• At least one use_device clause must appear.2058

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical2059

value; in C or C++, the condition must evaluate to a scalar integer value.2060

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in2061

use_device clauses.2062

2.8.1 use device clause2063

The use_device clause tells the compiler to use device-accessible memory address of any var in2064

var-list in code within the construct. In particular, this may be used to pass the device address of2065

var to optimized procedures written in a lower-level API. If var is a null pointer, the same value is2066

used for the device address. Otherwise, when there is no if_present clause, and either there is2067

no if clause or the condition in the if clause evaluates to true, the var in var-list must be present2068

in device-accessible memory due to data regions or data lifetimes that contain this construct. For2069

data in shared memory which is not a captured variable, the device address is the same as the host2070

address.2071

2.8.2 if clause2072

The if clause is optional. When an if clause appears and the condition evaluates to false, the2073

compiler will not replace the addresses of any var in code within the construct. When there is no if2074

clause, or when an if clause appears and the condition evaluates to true, the compiler will replace2075

the addresses as described in the previous subsection.2076

60

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

2.8.3 if present clause2077

When an if_present clause appears on the directive, the compiler will only replace the address2078

of any var which appears in var-list that is present in device-accessible memory for the current2079

device.2080

2.9 Loop Construct2081

Summary2082

The OpenACC loop construct applies to a loop which must immediately follow this directive. The2083

loop construct can describe what type of parallelism to use to execute the loop and declare private2084

vars and reduction operations.2085

Syntax2086

In C and C++, the syntax of the loop construct is2087

#pragma acc loop [clause-list] new-line2088

for loop2089

In Fortran, the syntax of the loop construct is2090

!$acc loop [clause-list]2091

do loop2092

where clause is one of the following:2093

collapse([force:] n)2094

gang [(gang-arg-list)]2095

worker [([num:]int-expr)]2096

vector [([length:]int-expr)]2097

seq2098

independent2099

auto2100

tile(size-expr-list)2101

device_type(device-type-list)2102

private(var-list)2103

reduction(operator:var-list)2104

where gang-arg is one of:2105

[num:]int-expr2106

dim:int-expr2107

static:size-expr2108

and gang-arg-list may have at most one num, one dim, and one static argument, and where2109

size-expr is one of:2110

*2111

int-expr2112

2113

Some clauses are only valid in the context of a kernels construct; see the descriptions below.2114

An orphaned loop construct is a loop construct that has no parent compute construct.2115

61

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

A loop construct is data-independent if it has an independent clause that is determined explic-2116

itly, implicitly, or from an auto clause. A loop construct is sequential if it has a seq clause that2117

is determined explicitly or from an auto clause.2118

When do-loop is a do concurrent, the OpenACC loop construct applies to the loop for each2119

index in the concurrent-header. The loop construct can describe what type of parallelism to use2120

to execute all the loops, and declares all indices appearing in the concurrent-header to be implicitly2121

private. If the loop construct that is associated with do concurrent is combined with a compute2122

construct then concurrent-locality is processed as follows: variables appearing in a local are treated2123

as appearing in a private clause; variables appearing in a local init are treated as appearing in a2124

firstprivate clause; variables appearing in a shared are treated as appearing in a copy clause;2125

and a default(none) locality spec implies a default(none) clause on the compute construct. If2126

the loop construct is not combined with a compute construct, the behavior is implementation-2127

defined.2128

Restrictions2129

• Only the collapse, gang, worker, vector, seq, independent, auto, and tile2130

clauses may follow a device_type clause.2131

• The int-expr argument to the worker and vector clauses must be invariant in the kernels2132

region.2133

• A loop associated with a loop construct that does not have a seq clause must be written to2134

meet all of the following conditions:2135

– The loop variable must be of integer, C/C++ pointer, or C++ random-access iterator2136

type.2137

– The loop variable must monotonically increase or decrease in the direction of its termi-2138

nation condition.2139

– The loop trip count must be computable in constant time when entering the loop con-2140

struct.2141

For a C++ range-based for loop, the loop variable identified by the above conditions is the2142

internal iterator, such as a pointer, that the compiler generates to iterate the range. It is not the2143

variable declared by the for loop.2144

• Only one of the seq, independent, and auto clauses may appear.2145

• A gang, worker, or vector clause may not appear if a seq clause appears.2146

• A loop construct with a gang, worker, or vector clause must not lexically enclose2147

another loop construct with a gang, worker, or vector clause specifying an equal or2148

higher level of parallelism unless the loop constructs have different parent compute scopes.2149

For example, in a loop nest that contains no interleaved compute constructs or procedures, a2150

gang(dim:1) loop must not enclose a gang(dim:3) loop or be enclosed by a worker2151

loop, but a seq loop is permitted at any nesting level.2152

• At most one gang clause may appear on a loop construct.2153

• A tile and collapse clause may not appear on loop that is associated with do concurrent.2154

62

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

2.9.1 collapse clause2155

The collapse clause is used to specify how many nested loops are associated with the loop2156

construct. The argument to the collapse clause must be a constant positive integer expression.2157

If no collapse clause appears, only the immediately following loop is associated with the loop2158

construct.2159

If more than one loop is associated with the loop construct, the iterations of all the associated loops2160

are all scheduled according to the rest of the clauses. The trip count for all loops associated with2161

the collapse clause must be computable and invariant in all the loops. The particular integer2162

type used to compute the trip count for the collapsed loops is implementation defined. However, the2163

integer type used for the trip count has at least the precision of each loop variable of the associated2164

loops.2165

It is implementation-defined whether a gang, worker or vector clause on the construct is ap-2166

plied to each loop, or to the linearized iteration space.2167

The associated loops are the n nested loops that immediately follow the loop construct. If the2168

force modifier does not appear, then the associated loops must be tightly nested. If the force2169

modifier appears, then any intervening code may be executed multiple times as needed to perform2170

the collapse.2171

Restrictions2172

• Each associated loop, except the innermost, must contain exactly one loop or loop nest.2173

• Intervening code must not contain other OpenACC directives or calls to API routines.2174

H H
2175

Examples2176

2177

• In the code below, a compiler may choose to move the call to tan inside the inner loop in2178

order to collapse the two loops, resulting in redundant execution of the intervening code.2179

#pragma acc parallel loop collapse(force:2)2180

{2181

for (int i = 0; i < 360; i++)2182

{2183

// This operation may be executed additional times in order2184

// to perform the forced collapse.2185

tanI = tan(a[i]);2186

for (int j = 0; j < N; j++)2187

{2188

// Do Something.2189

}2190

}2191

}2192

N N2193

63

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

2.9.2 gang clause2194

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2195

the gang clause behaves as follows. It specifies that the iterations of the associated loop or loops2196

are to be executed in parallel by distributing the iterations among the gangs along the associated2197

dimension created by the compute construct. The associated dimension is the value of the dim2198

argument, if it appears, or is dimension one. The dim argument must be a constant positive integer2199

with value 1, 2, or 3. If the associated dimension is d, a loop construct with the gang clause2200

transitions a compute region from gang-redundant mode to gang-partitioned mode on dimension d2201

(GRd to GPd). The number of gangs in dimension d is controlled by the parallel construct; the2202

num argument is not allowed. The loop iterations must be data independent, except for vars which2203

appear in a reduction clause or which are modified in an atomic region.2204

When the parent compute construct is a kernels construct, the gang clause behaves as follows.2205

It specifies that the iterations of the associated loop or loops are to be executed in parallel across the2206

gangs. The dim argument is not allowed. An argument with no keyword or with the num keyword2207

is allowed only when the num_gangs does not appear on the kernels construct. If an argument2208

with no keyword or an argument after the num keyword appears, it specifies how many gangs to use2209

to execute the iterations of this loop.2210

The scheduling of loop iterations to gangs is not specified unless the static modifier appears as2211

an argument. If the static modifier appears with an integer expression, that expression is used2212

as a chunk size. If the static modifier appears with an asterisk, the implementation will select a2213

chunk size. The iterations are divided into chunks of the selected chunk size, and the chunks are2214

assigned to gangs starting with gang zero and continuing in round-robin fashion. Two gang loops2215

in the same parallel region with the same number of iterations, and with static clauses with the2216

same argument, will assign the iterations to gangs in the same manner. Two gang loops in the2217

same kernels region with the same number of iterations, the same number of gangs to use, and with2218

static clauses with the same argument, will assign the iterations to gangs in the same manner.2219

A gang(dim:1) clause is implied on a data-independent loop construct without an explicit2220

gang clause if the following conditions hold while ignoring gang, worker, and vector clauses2221

on any sequential loop constructs and while treating implicit routine directives as if they are2222

explicit:2223

• This loop construct’s parent compute construct, if any, is not a kernels construct.2224

• An explicit gang(dim:1) clause would be permitted on this loop construct. For example,2225

it must not conflict with a nested loop construct or an enclosing procedure’s routine2226

directive, as specified in Sections 2.9 and 2.15.1.2227

• For every lexically enclosing data-independent loop construct, either an explicit gang(dim:1)2228

clause would not be permitted on the enclosing loop construct, or the loop constructs have2229

different parent compute scopes.2230

Note: An important consequence of the above specification is that, before implicitly determining2231

gang clauses on loop constructs, the implementation must analyze any auto clauses to determine2232

if loop constructs are sequential, and it must determine relevant implicit routine directives (see2233

the implicit gang clause example in Section 2.15.1).2234

Note: As a performance optimization, the implementation might select different levels of paral-2235

lelism for a loop construct than specified by explicitly or implicitly determined clauses as long2236

64

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

as it can prove program semantics are preserved. In particular, the implementation must consider2237

semantic differences between gang-redundant and gang-partitioned mode. For example, in a series2238

of tightly nested, data-independent loop constructs, implementations often move gang-partitioning2239

from one loop construct to another without affecting semantics.2240

Note: If the auto or device_type clause appears on a loop construct, it is the programmer’s2241

responsibility to ensure that program semantics are the same regardless of whether the auto clause2242

is treated as independent or seq and regardless of the device type for which the program is2243

compiled. In particular, the programmer must consider the effect on both explicitly and implicitly2244

determined gang clauses and thus on gang-redundant and gang-partitioned mode. Examples in2245

Sections 2.9.11 and 2.15.1 demonstrate how this issue for the auto clause might affect portability2246

across OpenACC implementations.2247

2.9.3 worker clause2248

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2249

the worker clause specifies that the iterations of the associated loop or loops are to be executed2250

in parallel by distributing the iterations among the multiple workers within a single gang. A loop2251

construct with a worker clause causes a gang to transition from worker-single mode to worker-2252

partitioned mode. In contrast to the gang clause, the worker clause first activates additional2253

worker-level parallelism and then distributes the loop iterations across those workers. No argu-2254

ment is allowed. The loop iterations must be data independent, except for vars which appear in a2255

reduction clause or which are modified in an atomic region.2256

When the parent compute construct is a kernels construct, the worker clause specifies that the2257

iterations of the associated loop or loops are to be executed in parallel across the workers within2258

a single gang. An argument is allowed only when the num_workers does not appear on the2259

kernels construct. The optional argument specifies how many workers per gang to use to execute2260

the iterations of this loop.2261

All workers will complete execution of their assigned iterations before any worker proceeds beyond2262

the end of the loop.2263

2.9.4 vector clause2264

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2265

the vector clause specifies that the iterations of the associated loop or loops are to be executed in2266

vector or SIMD mode. A loop construct with a vector clause causes a worker to transition from2267

vector-single mode to vector-partitioned mode. Similar to the worker clause, the vector clause2268

first activates additional vector-level parallelism and then distributes the loop iterations across those2269

vector lanes. The operations will execute using vectors of the length specified or chosen for the2270

parallel region. The loop iterations must be data independent, except for vars which appear in a2271

reduction clause or which are modified in an atomic region.2272

When the parent compute construct is a kernels construct, the vector clause specifies that the2273

iterations of the associated loop or loops are to be executed with vector or SIMD processing. An2274

argument is allowed only when the vector_length does not appear on the kernels construct.2275

If an argument appears, the iterations will be processed in vector strips of that length; if no argument2276

appears, the implementation will choose an appropriate vector length.2277

65

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

All vector lanes will complete execution of their assigned iterations before any vector lane proceeds2278

beyond the end of the loop.2279

2.9.5 seq clause2280

The seq clause specifies that the associated loop or loops are to be executed sequentially by the2281

accelerator. This clause will override any automatic parallelization or vectorization.2282

2.9.6 independent clause2283

The independent clause tells the implementation that the loop iterations must be data indepen-2284

dent, except for vars which appear in a reduction clause or which are modified in an atomic2285

region. This allows the implementation to generate code to execute the iterations in parallel with no2286

synchronization.2287

A loop construct with no auto or seq clause is treated as if it has the independent clause2288

when it is an orphaned loop construct or its parent compute construct is a parallel construct.2289

Note2290

• It is likely a programming error to use the independent clause on a loop if any iteration2291

writes to a variable or array element that any other iteration also writes or reads, except for2292

vars which appear in a reduction clause or which are modified in an atomic region.2293

• The implementation may be restricted in the levels of parallelism it can apply by the presence2294

of loop constructs with gang, worker, or vector clauses for outer or inner loops.2295

2.9.7 auto clause2296

The auto clause specifies that the implementation must analyze the loop and determine whether the2297

loop iterations are data-independent. If it determines that the loop iterations are data-independent,2298

the implementation must treat the auto clause as if it is an independent clause. If not, or if it2299

is unable to make a determination, it must treat the auto clause as if it is a seq clause, and it must2300

ignore any gang, worker, or vector clauses on the loop construct.2301

When the parent compute construct is a kernels construct, a loop construct with no independent2302

or seq clause is treated as if it has the auto clause.2303

Note: Combining the auto and gang clauses might impact a program’s portability across Open-2304

ACC implementations. See Section 2.9.2 for details.2305

2.9.8 tile clause2306

The tile clause specifies that the implementation will split each loop in the loop nest into two2307

loops, with an outer set of tile loops and an inner set of element loops. The argument to the tile2308

clause is a list of one or more tile sizes, where each tile size is a constant positive integer expression2309

or an asterisk. If there are n tile sizes in the list, the loop construct must be immediately followed2310

by n tightly-nested loops. The first argument in the size-expr-list corresponds to the innermost loop2311

of the n associated loops, and the last element corresponds to the outermost associated loop. If the2312

tile size is an asterisk, the implementation will choose an appropriate value. Each loop in the nest2313

will be split, or strip-mined, into two loops, an outer tile loop and an inner element loop. The trip2314

count of the element loop will be limited to the corresponding tile size from the size-expr-list. The2315

66

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

tile loops will be reordered to be outside all the element loops, and the element loops will all be2316

inside the tile loops.2317

If the vector clause appears on the loop construct, the vector clause is applied to the element2318

loops. If the gang clause appears on the loop construct, the gang clause is applied to the tile2319

loops. If the worker clause appears on the loop construct, the worker clause is applied to the2320

element loops if no vector clause appears, and to the tile loops otherwise.2321

2.9.9 device type clause2322

The device_type clause is described in Section 2.4 Device-Specific Clauses.2323

2.9.10 private clause2324

The private clause on a loop construct specifies that a copy of each item in var-list will be2325

created. If the body of the loop is executed in vector-partitioned mode, a copy of the item is created2326

for each thread associated with each vector lane. If the body of the loop is executed in worker-2327

partitioned vector-single mode, a copy of the item is created for each worker and shared across the2328

set of threads associated with all the vector lanes of that worker. Otherwise, a copy of the item is2329

created for each gang in all dimensions and shared across the set of threads associated with all the2330

vector lanes of all the workers of that gang.2331

Restrictions2332

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in private2333

clauses.2334

H H
2335

Examples2336

2337

• In the example below, tmp is private to each worker of every gang but shared across all the2338

vector lanes of a worker.2339

!$acc parallel2340

!$acc loop gang2341

do k = 1, n2342

!$acc loop worker private(tmp)2343

do j = 1, n2344

!a single vector lane in each gang and worker assigns to tmp2345

tmp = b(j,k) + c(j,k)2346

!$acc loop vector2347

do i = 1, n2348

!all vector lanes use the result of the above update to tmp2349

a(i,j,k) = a(i,j,k) + tmp/div2350

enddo2351

enddo2352

enddo2353

!$acc end parallel2354

• In the example below, tmp is private to each gang in every dimension.2355

67

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

!$acc parallel num_gangs(3,50,150)2356

!$acc loop gang(dim:3)2357

do k = 1, n2358

!$acc loop gang(dim:2) private(tmp)2359

do j = 1, n2360

!all gangs along dimension 1 execute in gang redundant mode and2361

!assign to tmp which is private to each gang in all dimensions2362

tmp = b(j,k) + c(j,k)2363

!$acc loop gang(dim:1)2364

do i = 1, n2365

a(i,j,k) = a(i,j,k) + tmp/div2366

enddo2367

enddo2368

enddo2369

!$acc end parallel2370

N N2371

2.9.11 reduction clause2372

The reduction clause specifies a reduction operator and one or more vars. For each reduction2373

var, a private copy is created in the same manner as for a private clause on the loop construct,2374

and initialized for that operator; see the table in Section 2.5.15 reduction clause. After the loop, the2375

values for each thread are combined using the specified reduction operator, and the result combined2376

with the value of the original var and stored in the original var. If the original var is not private,2377

this update occurs by the end of the compute region, and any access to the original var is undefined2378

within the compute region. Otherwise, the update occurs at the end of the loop. If the reduction2379

var is an array or subarray, the reduction operation is logically equivalent to applying that reduction2380

operation to each array element of the array or subarray individually. If the reduction var is a com-2381

posite variable, the reduction operation is logically equivalent to applying that reduction operation2382

to each member of the composite variable individually.2383

If a variable is involved in a reduction that spans multiple nested loops where two or more of those2384

loops have associated loop directives, a reduction clause containing that variable must appear2385

on each of those loop directives.2386

Restrictions2387

• A var in a reduction clause must be a scalar variable name, an aggregate variable name,2388

an array element, or a subarray (refer to Section 2.7.1).2389

• Reduction clauses on nested constructs for the same reduction var must have the same reduc-2390

tion operator.2391

• Every var in a reduction clause appearing on an orphaned loop construct must be private.2392

• The restrictions for a reduction clause on a compute construct listed in in Section 2.5.152393

reduction clause also apply to a reduction clause on a loop construct.2394

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in2395

reduction clauses.2396

• See Section 2.6.2 Variables with Implicitly Determined Data Attributes for a restriction re-2397

quiring certain loop reduction variables to have explicit data clauses on their parent compute2398

68

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

constructs.2399

• A reduction clause may not appear on a loop directive that has a gang clause with a2400

dim: argument whose value is greater than 1.2401

• A reduction clause may not appear on a loop directive that has a gang clause and2402

is within a compute construct that has a num_gangs clause with more than one explicit2403

argument.2404

H H
2405

Examples2406

2407

• x is not private at the loop directive below, so its reduction normally updates x at the end2408

of the parallel region, where gangs synchronize. When possible, the implementation might2409

choose to partially update x at the loop exit instead, or fully if num_gangs(1) were added2410

to the parallel directive. However, portable applications cannot rely on such early up-2411

dates, so accesses to x are undefined within the parallel region outside the loop.2412

int x = 0;2413

#pragma acc parallel copy(x)2414

{2415

// gang-shared x undefined2416

#pragma acc loop gang worker vector reduction(+:x)2417

for (int i = 0; i < I; ++i)2418

x += 1; // vector-private x modified2419

// gang-shared x undefined2420

} // gang-shared x updated for gang/worker/vector reduction2421

// x = I2422

• x is private at each of the innermost two loop directives below, so each of their reductions2423

updates x at the loop’s exit. However, x is not private at the outer loop directive, so its2424

reduction updates x by the end of the parallel region instead.2425

int x = 0;2426

#pragma acc parallel copy(x)2427

{2428

// gang-shared x undefined2429

#pragma acc loop gang reduction(+:x)2430

for (int i = 0; i < I; ++i) {2431

#pragma acc loop worker reduction(+:x)2432

for (int j = 0; j < J; ++j) {2433

#pragma acc loop vector reduction(+:x)2434

for (int k = 0; k < K; ++k) {2435

x += 1; // vector-private x modified2436

} // worker-private x updated for vector reduction2437

} // gang-private x updated for worker reduction2438

}2439

// gang-shared x undefined2440

} // gang-shared x updated for gang reduction2441

// x = I * J * K2442

69

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

• At each loop directive below, x is private and y is not private due to the data clauses on2443

the parallel directive. Thus, each reduction updates x at the loop exit, but each reduction2444

updates y by the end of the parallel region instead.2445

int x = 0, y = 0;2446

#pragma acc parallel firstprivate(x) copy(y)2447

{2448

// gang-private x = 0; gang-shared y undefined2449

#pragma acc loop seq reduction(+:x,y)2450

for (int i = 0; i < I; ++i) {2451

x += 1; y += 2; // loop-private x and y modified2452

} // gang-private x updated for trivial seq reduction2453

// gang-private x = I; gang-shared y undefined2454

#pragma acc loop worker reduction(+:x,y)2455

for (int i = 0; i < I; ++i) {2456

x += 1; y += 2; // worker-private x and y modified2457

} // gang-private x updated for worker reduction2458

// gang-private x = 2 * I; gang-shared y undefined2459

#pragma acc loop vector reduction(+:x,y)2460

for (int i = 0; i < I; ++i) {2461

x += 1; y += 2; // vector-private x and y modified2462

} // gang-private x updated for vector reduction2463

// gang-private x = 3 * I; gang-shared y undefined2464

} // gang-shared y updated for gang/seq/worker/vector reductions2465

// x = 0; y = 3 * I * 22466

• The examples below are equivalent. That is, the reduction clause on the combined con-2467

struct applies to the loop construct but implies a copy clause on the parallel construct. Thus,2468

x is not private at the loop directive, so the reduction updates x by the end of the parallel2469

region.2470

int x = 0;2471

#pragma acc parallel loop worker reduction(+:x)2472

for (int i = 0; i < I; ++i) {2473

x += 1; // worker-private x modified2474

} // gang-shared x updated for gang/worker reduction2475

// x = I2476

2477

int x = 0;2478

#pragma acc parallel copy(x)2479

{2480

// gang-shared x undefined2481

#pragma acc loop worker reduction(+:x)2482

for (int i = 0; i < I; ++i) {2483

x += 1; // worker-private x modified2484

}2485

// gang-shared x undefined2486

} // gang-shared x updated for gang/worker reduction2487

// x = I2488

• If the implementation treats the auto clause below as independent, the loop executes in2489

gang-partitioned mode and thus examines every element of arr once to compute arr’s max-2490

imum. However, if the implementation treats auto as seq, the gangs redundantly compute2491

70

The OpenACC® API Version Technical Report 24-1 2.9. Loop Construct

arr’s maximum, but the combined result is still arr’s maximum. Either way, because x is2492

not private at the loop directive, the reduction updates x by the end of the parallel region.2493

int x = 0;2494

const int *arr = /*array of I values*/;2495

#pragma acc parallel copy(x)2496

{2497

// gang-shared x undefined2498

#pragma acc loop auto gang reduction(max:x)2499

for (int i = 0; i < I; ++i) {2500

// complex loop body2501

x = x < arr[i] ? arr[i] : x; // gang- or loop-private2502

// x modified2503

}2504

// gang-shared x undefined2505

} // gang-shared x updated for gang or gang/seq reduction2506

// x = arr maximum2507

• The following example is the same as the previous one except that the reduction operator is2508

now +. While gang-partitioned mode sums the elements of arr once, gang-redundant mode2509

sums them once per gang, producing a result many times arr’s sum. This example shows2510

that, for some reduction operators, combining auto, gang, and reduction is typically2511

non-portable.2512

int x = 0;2513

const int *arr = /*array of I values*/;2514

#pragma acc parallel copy(x)2515

{2516

// gang-shared x undefined2517

#pragma acc loop auto gang reduction(+:x)2518

for (int i = 0; i < I; ++i) {2519

// complex loop body2520

x += arr[i]; // gang or loop-private x modified2521

}2522

// gang-shared x undefined2523

} // gang-shared x updated for gang or gang/seq reduction2524

// x = arr sum possibly times number of gangs2525

• At the following loop directive, x and z are private, so the loop reductions are not across2526

gangs even though the loop is gang-partitioned. Nevertheless, the reduction clause on the2527

loop directive is important as the loop is also vector-partitioned. These reductions are only2528

partial reductions relative to the full set of values computed by the loop, so the reduction2529

clause is needed on the parallel directive to reduce across gangs.2530

int x = 0, y = 0;2531

#pragma acc parallel copy(x) reduction(+:x,y)2532

{2533

int z = 0;2534

#pragma acc loop gang vector reduction(+:x,z)2535

for (int i = 0; i < I; ++i) {2536

x += 1; z += 2; // vector-private x and z modified2537

} // gang-private x and z updated for vector reduction2538

y += z; // gang-private y modified2539

} // gang-shared x and y updated for gang reduction2540

71

The OpenACC® API Version Technical Report 24-1 2.11. Combined Constructs

// x = I; y = I * 22541

N N2542

2543

2.10 Cache Directive2544

Summary2545

The cache directive may appear at the top of (inside of) a loop. It suggests array elements or2546

subarrays to be fetched into the highest level of the cache for the body of the loop.2547

Syntax2548

In C and C++, the syntax of the cache directive is2549

#pragma acc cache([readonly:]var-list) new-line2550

In Fortran, the syntax of the cache directive is2551

!$acc cache([readonly:]var-list)2552

A var in a cache directive must be a single array element or a simple subarray. In C and C++,2553

a simple subarray is an array name followed by an extended array range specification in brackets,2554

with start and length, such as2555

arr[lower:length]2556

where the lower bound is a constant, loop invariant, or the for loop variable plus or minus a2557

constant or loop invariant, and the length is a constant.2558

In Fortran, a simple subarray is an array name followed by a comma-separated list of range specifi-2559

cations in parentheses, with lower and upper bound subscripts, such as2560

arr(lower:upper,lower2:upper2)2561

The lower bounds must be constant, loop invariant, or the do loop variable plus or minus a constant2562

or loop invariant; moreover the difference between the corresponding upper and lower bounds must2563

be a constant.2564

If the optional readonly modifier appears, then the implementation may assume that the data2565

referenced by any var in that directive is never written to within the applicable region.2566

Restrictions2567

• If an array element or subarray is listed in a cache directive, all references to that array2568

during execution of that loop iteration must not refer to elements of the array outside the2569

index range specified in the cache directive.2570

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in cache2571

directives.2572

2.11 Combined Constructs2573

Summary2574

The combined OpenACC parallel loop, serial loop, and kernels loop constructs are2575

shortcuts for specifying a loop construct nested immediately inside a parallel, serial, or2576

72

The OpenACC® API Version Technical Report 24-1 2.11. Combined Constructs

kernels construct. The meaning is identical to explicitly specifying a parallel, serial, or2577

kernels construct containing a loop construct. Any clause that is allowed on a parallel or2578

loop construct is allowed on the parallel loop construct; any clause allowed on a serial or2579

loop construct is allowed on a serial loop construct; and any clause allowed on a kernels2580

or loop construct is allowed on a kernels loop construct.2581

Syntax2582

In C and C++, the syntax of the parallel loop construct is2583

#pragma acc parallel loop [clause-list] new-line2584

for loop2585

In Fortran, the syntax of the parallel loop construct is2586

!$acc parallel loop [clause-list]2587

do loop2588

[!$acc end parallel loop]2589

The associated structured block is the loop which must immediately follow the directive. Any of2590

the parallel or loop clauses valid in a parallel region may appear.2591

In C and C++, the syntax of the serial loop construct is2592

#pragma acc serial loop [clause-list] new-line2593

for loop2594

In Fortran, the syntax of the serial loop construct is2595

!$acc serial loop [clause-list]2596

do loop2597

[!$acc end serial loop]2598

The associated structured block is the loop which must immediately follow the directive. Any of2599

the serial or loop clauses valid in a serial region may appear.2600

In C and C++, the syntax of the kernels loop construct is2601

#pragma acc kernels loop [clause-list] new-line2602

for loop2603

In Fortran, the syntax of the kernels loop construct is2604

!$acc kernels loop [clause-list]2605

do loop2606

[!$acc end kernels loop]2607

The associated structured block is the loop which must immediately follow the directive. Any of2608

the kernels or loop clauses valid in a kernels region may appear.2609

A private or reduction clause on a combined construct is treated as if it appeared on the2610

loop construct. In addition, a reduction clause on a combined construct implies a copy clause2611

as described in Section 2.6.2.2612

Restrictions2613

• The restrictions for the parallel, serial, kernels, and loop constructs apply.2614

73

The OpenACC® API Version Technical Report 24-1 2.12. Atomic Construct

2.12 Atomic Construct2615

Summary2616

An atomic construct ensures that a specific storage location is accessed and/or updated atomically,2617

preventing simultaneous reading and writing by gangs, workers, and vector threads that could result2618

in indeterminate values.2619

Syntax2620

In C and C++, the syntax of the atomic constructs is:2621

#pragma acc atomic [atomic-clause] [if(condition)] new-line2622

expression-stmt2623

or:2624

#pragma acc atomic capture [if(condition)] new-line2625

structured block2626

Where atomic-clause is one of read, write, update, or capture. The expression-stmt is an2627

expression statement with one of the following forms:2628

If the atomic-clause is read:2629

v = x;2630

If the atomic-clause is write:2631

x = expr;2632

If the atomic-clause is update or no clause appears:2633

x++;2634

x--;2635

++x;2636

--x;2637

x binop= expr;2638

x = x binop expr;2639

x = expr binop x;2640

If the atomic-clause is capture:2641

v = x++;2642

v = x--;2643

v = ++x;2644

v = --x;2645

v = x binop= expr;2646

v = x = x binop expr;2647

v = x = expr binop x;2648

The structured-block is a structured block with one of the following forms:2649

{v = x; x binop= expr;}2650

{x binop= expr; v = x;}2651

{v = x; x = x binop expr;}2652

{v = x; x = expr binop x;}2653

74

The OpenACC® API Version Technical Report 24-1 2.12. Atomic Construct

{x = x binop expr; v = x;}2654

{x = expr binop x; v = x;}2655

{v = x; x = expr;}2656

{v = x; x++;}2657

{v = x; ++x;}2658

{++x; v = x;}2659

{x++; v = x;}2660

{v = x; x--;}2661

{v = x; --x;}2662

{--x; v = x;}2663

{x--; v = x;}2664

In the preceding expressions:2665

• x and v (as applicable) are both l-value expressions with scalar type.2666

• During the execution of an atomic region, multiple syntactic occurrences of x must designate2667

the same storage location.2668

• Neither of v and expr (as applicable) may access the storage location designated by x.2669

• Neither of x and expr (as applicable) may access the storage location designated by v.2670

• expr is an expression with scalar type.2671

• binop is one of +, *, -, /, &, ˆ, |, <<, or >>.2672

• binop, binop=, ++, and -- are not overloaded operators.2673

• The expression x binop expr must be mathematically equivalent to x binop (expr). This2674

requirement is satisfied if the operators in expr have precedence greater than binop, or by2675

using parentheses around expr or subexpressions of expr.2676

• The expression expr binop x must be mathematically equivalent to (expr) binop x. This2677

requirement is satisfied if the operators in expr have precedence equal to or greater than binop,2678

or by using parentheses around expr or subexpressions of expr.2679

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is2680

unspecified.2681

In Fortran the syntax of the atomic constructs is:2682

!$acc atomic read [if(condition)]2683

capture-statement2684

[!$acc end atomic]2685

or2686

!$acc atomic write [if(condition)]2687

write-statement2688

[!$acc end atomic]2689

or2690

!$acc atomic [update] [if(condition)]2691

update-statement2692

75

The OpenACC® API Version Technical Report 24-1 2.12. Atomic Construct

[!$acc end atomic]2693

or2694

!$acc atomic capture [if(condition)]2695

update-statement2696

capture-statement2697

!$acc end atomic2698

or2699

!$acc atomic capture [if(condition)]2700

capture-statement2701

update-statement2702

!$acc end atomic2703

or2704

!$acc atomic capture [if(condition)]2705

capture-statement2706

write-statement2707

!$acc end atomic2708

where write-statement has the following form (if atomic-clause is write or capture):2709

x = expr2710

where capture-statement has the following form (if atomic-clause is capture or read):2711

v = x2712

and where update-statement has one of the following forms (if atomic-clause is update, capture,2713

or no clause appears):2714

x = x operator expr2715

x = expr operator x2716

x = intrinsic procedure name(x, expr-list)2717

x = intrinsic procedure name(expr-list, x)2718

In the preceding statements:2719

• x and v (as applicable) are both scalar variables of intrinsic type.2720

• x must not be an allocatable variable.2721

• During the execution of an atomic region, multiple syntactic occurrences of x must designate2722

the same storage location.2723

• None of v, expr, and expr-list (as applicable) may access the same storage location as x.2724

• None of x, expr, and expr-list (as applicable) may access the same storage location as v.2725

• expr is a scalar expression.2726

• expr-list is a comma-separated, non-empty list of scalar expressions. If intrinsic procedure name2727

refers to iand, ior, or ieor, exactly one expression must appear in expr-list.2728

76

The OpenACC® API Version Technical Report 24-1 2.12. Atomic Construct

• intrinsic procedure name is one of max, min, iand, ior, or ieor. operator is one of +,2729

*, -, /, .and., .or., .eqv., or .neqv..2730

• The expression x operator expr must be mathematically equivalent to x operator (expr).2731

This requirement is satisfied if the operators in expr have precedence greater than operator,2732

or by using parentheses around expr or subexpressions of expr.2733

• The expression expr operator x must be mathematically equivalent to (expr) operator x.2734

This requirement is satisfied if the operators in expr have precedence equal to or greater than2735

operator, or by using parentheses around expr or subexpressions of expr.2736

• intrinsic procedure name must refer to the intrinsic procedure name and not to other program2737

entities.2738

• operator must refer to the intrinsic operator and not to a user-defined operator. All assign-2739

ments must be intrinsic assignments.2740

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is2741

unspecified.2742

An atomic construct with the read clause forces an atomic read of the location designated by x.2743

An atomic construct with the write clause forces an atomic write of the location designated by2744

x.2745

An atomic construct with the update clause forces an atomic update of the location designated2746

by x using the designated operator or intrinsic. Note that when no clause appears, the semantics2747

are equivalent to atomic update. Only the read and write of the location designated by x are2748

performed mutually atomically. The evaluation of expr or expr-list need not be atomic with respect2749

to the read or write of the location designated by x.2750

An atomic construct with the capture clause forces an atomic update of the location designated2751

by x using the designated operator or intrinsic while also capturing the original or final value of2752

the location designated by x with respect to the atomic update. The original or final value of the2753

location designated by x is written into the location designated by v depending on the form of the2754

atomic construct structured block or statements following the usual language semantics. Only2755

the read and write of the location designated by x are performed mutually atomically. Neither the2756

evaluation of expr or expr-list, nor the write to the location designated by v, need to be atomic with2757

respect to the read or write of the location designated by x.2758

For all forms of the atomic construct, any combination of two or more of these atomic constructs2759

enforces mutually exclusive access to the locations designated by x. To avoid race conditions, all2760

accesses of the locations designated by x that could potentially occur in parallel must be protected2761

with an atomic construct.2762

Atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic re-2763

gions to the same storage location x even if those accesses occur during the execution of a reduction2764

clause.2765

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a2766

multiple of the size of x), then the behavior of the atomic region is implementation-defined.2767

The if clause specifies a condition where an atomic operation is required for correct parallel exe-2768

cution. If condition evaluates to true or no if clause appears, the atomic operation is required. If2769

77

The OpenACC® API Version Technical Report 24-1 2.13. Declare Directive

condition evaluates to false, the atomic directive can be safely ignored. Note: Conditional atom-2770

ics are useful when different parallelism strategies are employed for different architectures; it is the2771

programmer’s responsibility to ensure that the atomic operation is safe to ignore if condition is false.2772

Although not required, conditional atomics are recommended to be used with conditions that can2773

be evaluated at compile-time, including the acc_on_device routine.2774

Restrictions2775

• All atomic accesses to the storage locations designated by x throughout the program are2776

required to have the same type and type parameters.2777

• Storage locations designated by x must be less than or equal in size to the largest available2778

native atomic operator width.2779

• At most one if clause may appear.2780

2.13 Declare Directive2781

Summary2782

A declare directive is used in the declaration section of a Fortran subroutine, function, block2783

construct, or module, or following a variable declaration in C or C++. It can specify that a var is to2784

be allocated in device memory for the duration of the implicit data region of a function, subroutine2785

or program, and specify whether the data values are to be transferred from local memory to device2786

memory upon entry to the implicit data region, and from device memory to local memory upon exit2787

from the implicit data region. These directives create a visible device copy of the var.2788

Syntax2789

In C and C++, the syntax of the declare directive is:2790

#pragma acc declare clause-list new-line2791

In Fortran the syntax of the declare directive is:2792

!$acc declare clause-list2793

where clause is one of the following:2794

copy(var-list)2795

copyin([readonly:]var-list)2796

copyout(var-list)2797

create(var-list)2798

present(var-list)2799

deviceptr(var-list)2800

device_resident(var-list)2801

link(var-list)2802

The associated region is the implicit region associated with the function, subroutine, or program in2803

which the directive appears. If the directive appears in the declaration section of a Fortran module2804

subprogram, for a Fortran common block, or in a C or C++ global or namespace scope, the associated2805

region is the implicit region for the whole program. The copy, copyin, copyout, present,2806

and deviceptr data clauses are described in Section 2.7 Data Clauses.2807

78

The OpenACC® API Version Technical Report 24-1 2.13. Declare Directive

Restrictions2808

• A declare directive must be in the same scope as the declaration of any var that appears2809

in the clauses of the directive or any scope within a C or C++ function or Fortran function,2810

subroutine, or program.2811

• At least one clause must appear on a declare directive.2812

• A var in a declare declare must be a variable or array name, or a Fortran common block2813

name between slashes.2814

• A var may appear at most once in all the clauses of declare directives for a function,2815

subroutine, program, or module.2816

• In Fortran, assumed-size dummy arrays may not appear in a declare directive.2817

• In Fortran, pointer arrays may appear, but pointer association is not preserved in device mem-2818

ory.2819

• In a Fortran module declaration section, only create, copyin, device_resident, and2820

link clauses are allowed.2821

• In Fortran, any create or device_resident clause affecting a variable with the allo-2822

catable or pointer attribute must be visible at the allocation and deallocation of that variable.2823

• In C or C++ global or namespace scope, only create, copyin, deviceptr,2824

device_resident and link clauses are allowed.2825

• C and C++ extern variables may only appear in create, copyin, deviceptr,2826

device_resident and link clauses on a declare directive.2827

• In C or C++, the link clause must appear at global or namespace scope or the arguments2828

must be extern variables. In Fortran, the link clause must appear in a module declaration2829

section, or the arguments must be common block names enclosed in slashes.2830

• In C or C++, a longjmp call in the region must return to a setjmp call within the region.2831

• In C++, an exception thrown in the region must be handled within the region.2832

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional dummy arguments2833

in data clauses, including device_resident clauses.2834

2.13.1 device resident clause2835

Summary2836

The device_resident clause specifies that the memory for the named variables is allocated in2837

the current device memory and not in local memory. The host may not be able to access variables in2838

a device_resident clause. The accelerator data lifetime of global variables or common blocks2839

that appear in a device_resident clause is the entire execution of the program.2840

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the variable will2841

be allocated in and deallocated from the current device memory when the host thread executes2842

an allocate or deallocate statement for that variable, if the current device is a non-shared2843

memory device. If the variable has the Fortran pointer attribute, it may be allocated or deallocated2844

79

The OpenACC® API Version Technical Report 24-1 2.13. Declare Directive

by the host in the current device memory, or may appear on the left hand side of a pointer assignment2845

statement, if the right hand side variable itself appears in a device_resident clause.2846

In Fortran, the argument to a device_resident clause may be a common block name enclosed2847

in slashes; in this case, all declarations of the common block must have a matching2848

device_resident clause. In this case, the common block will be statically allocated in de-2849

vice memory, and not in local memory. The common block will be available to accelerator routines;2850

see Section 2.15 Procedure Calls in Compute Regions.2851

In a Fortran module declaration section, a var in a device_resident clause will be available to2852

accelerator subprograms.2853

In C or C++ global scope, a var in a device_resident clause will be available to accelerator2854

routines. A C or C++ extern variable may appear in a device_resident clause only if the2855

actual declaration and all extern declarations are also followed by device_resident clauses.2856

2.13.2 create clause2857

For data in shared memory, no action is taken.2858

For data not in shared memory, the create clause on a declare directive behaves as follows,2859

for each var in var-list:2860

• At entry to an implicit data region where the declare directive appears:2861

– If var is present, a present increment action with the structured reference counter is2862

performed. If var is a pointer reference, an attach action is performed.2863

– Otherwise, a create action with the structured reference counter is performed. If var is2864

a pointer reference, an attach action is performed.2865

• At exit from an implicit data region where the declare directive appears:2866

– If the structured reference counter for var is zero, no action is taken.2867

– Otherwise, a present decrement action with the structured reference counter is per-2868

formed. If var is a pointer reference, a detach action is performed. If both structured2869

and dynamic reference counters are zero, a delete action is performed.2870

If the declare directive appears in a global context, then the data in var-list is statically allocated2871

in device memory and the structured reference counter is set to one.2872

In Fortran, if a variable var in var-list has the Fortran allocatable or pointer attribute, then for a2873

non-shared memory device:2874

• For an allocate statement for var or an intrinsic assignment statement of var that will2875

allocate memory, memory will be allocated in both local memory as well as in the current2876

device memory and the dynamic reference counter will be set to one.2877

• For a deallocate statement for var or an intrinsic assignment statement of var that will2878

deallocate memory, memory will be deallocated from both local memory as well as the current2879

device memory and the dynamic reference counter will be set to zero.2880

• In Fortran, an intrinsic assignment statement that reallocates var behaves the same as a deal-2881

location followed by an allocation of var. Note: No update of device memory will occur as2882

80

The OpenACC® API Version Technical Report 24-1 2.14. Executable Directives

the result of an intrinsic assignment statement on the host; if data coherency between the host2883

and device is required, it is the user’s responsibility.2884

• An allocate, deallocate, or intrinsic assignment statement on a device other than the2885

host device will result in undefined behavior.2886

• If the structured reference counter is not zero, a runtime error is issued.2887

In Fortran, if a variable var in var-list has the Fortran pointer attribute, then it may appear on the2888

left hand side of a pointer assignment statement, if the right hand side variable itself appears in a2889

create clause.2890

Errors2891

• In Fortran, an acc_error_present error is issued at a deallocate statement if the struc-2892

tured reference counter is not zero.2893

See Section 5.2.2.2894

2.13.3 link clause2895

The link clause is used for large global host static data that is referenced within an accelerator2896

routine and that has a dynamic data lifetime on the device. The link clause specifies that only a2897

global link for the named variables is statically created in accelerator memory. The host data struc-2898

ture remains statically allocated and globally available. The device data memory will be allocated2899

only when the global variable appears on a data clause for a data construct, compute construct, or2900

enter data directive. The arguments to the link clause must be global data. A declare link2901

clause must be visible everywhere the global variables or common block variables are explicitly or2902

implicitly used in a data clause, compute construct, or accelerator routine. The global variable or2903

common block variables may be used in accelerator routines. The accelerator data lifetime of vari-2904

ables or common blocks that appear in a link clause is the data region that allocates the variable or2905

common block with a data clause, or from the execution of the enter data directive that allocates2906

the data until an exit data directive deallocates it or until the end of the program.2907

2.14 Executable Directives2908

2.14.1 Init Directive2909

Summary2910

The init directive initializes the runtime for the given device or devices of the given device type.2911

This can be used to isolate any initialization cost from the computational cost, when collecting2912

performance statistics. If no device type appears all devices will be initialized. An init directive2913

may be used in place of a call to the acc_init or acc_init_device runtime API routine, as2914

described in Section 3.2.7.2915

Syntax2916

In C and C++, the syntax of the init directive is:2917

#pragma acc init [clause-list] new-line2918

In Fortran the syntax of the init directive is:2919

!$acc init [clause-list]2920

81

The OpenACC® API Version Technical Report 24-1 2.14. Executable Directives

where clause is one of the following:2921

device_type (device-type-list)2922

device_num (int-expr)2923

if(condition)2924

2925

device type clause2926

The device_type clause specifies the type of device that is to be initialized in the runtime. If the2927

device_type clause appears, then the acc-current-device-type-var for the current thread is set to2928

the argument value. If no device_num clause appears then all devices of this type are initialized.2929

device num clause2930

The device_num clause specifies the device id to be initialized. If the device_num clause2931

appears, then the acc-current-device-num-var for the current thread is set to the argument value. If2932

no device_type clause appears, then the specified device id will be initialized for all available2933

device types.2934

if clause2935

The if clause is optional; when there is no if clause, the implementation will generate code to2936

perform the initialization unconditionally. When an if clause appears, the implementation will2937

generate code to conditionally perform the initialization only when the condition evaluates to true.2938

Restrictions2939

• This directive may only appear in code executed on the host.2940

• If the directive is called more than once without an intervening acc_shutdown call or2941

shutdown directive, with a different value for the device type argument, the behavior is2942

implementation-defined.2943

• If some accelerator regions are compiled to only use one device type, using this directive with2944

a different device type may produce undefined behavior.2945

Errors2946

• An acc_error_device_type_unavailable error is issued if a device_type clause2947

appears and no device of that device type is available, or if no device_type clause appears2948

and no device of the current device type is available.2949

• An acc_error_device_unavailable error is issued if a device_num clause ap-2950

pears and the int-expr is not a valid device number or that device is not available, or if no2951

device_num clause appears and the current device is not available.2952

• An acc_error_device_init error is issued if the device cannot be initialized.2953

See Section 5.2.2.2954

2.14.2 Shutdown Directive2955

82

The OpenACC® API Version Technical Report 24-1 2.14. Executable Directives

Summary2956

The shutdown directive shuts down the connection to the given device or devices of the given2957

device type, and frees any associated runtime resources. This ends all data lifetimes in device2958

memory, which effectively sets structured and dynamic reference counters to zero. A shutdown2959

directive may be used in place of a call to the acc_shutdown or acc_shutdown_device2960

runtime API routine, as described in Section 3.2.8.2961

Syntax2962

In C and C++, the syntax of the shutdown directive is:2963

#pragma acc shutdown [clause-list] new-line2964

In Fortran the syntax of the shutdown directive is:2965

!$acc shutdown [clause-list]2966

where clause is one of the following:2967

device_type (device-type-list)2968

device_num (int-expr)2969

if(condition)2970

2971

device type clause2972

The device_type clause specifies the type of device that is to be disconnected from the runtime.2973

If no device_num clause appears then all devices of this type are disconnected.2974

device num clause2975

The device_num clause specifies the device id to be disconnected.2976

If no clauses appear then all available devices will be disconnected.2977

if clause2978

The if clause is optional; when there is no if clause, the implementation will generate code2979

to perform the shutdown unconditionally. When an if clause appears, the implementation will2980

generate code to conditionally perform the shutdown only when the condition evaluates to true.2981

Restrictions2982

• This directive may only appear in code executed on the host.2983

Errors2984

• An acc_error_device_type_unavailable error is issued if a device_type clause2985

appears and no device of that device type is available,2986

• An acc_error_device_unavailable error is issued if a device_num clause ap-2987

pears and the int-expr is not a valid device number or that device is not available.2988

• An acc_error_device_shutdown error is issued if there is an error shutting down the2989

device.2990

See Section 5.2.2.2991

83

The OpenACC® API Version Technical Report 24-1 2.14. Executable Directives

2.14.3 Set Directive2992

Summary2993

The set directive provides a means to modify internal control variables using directives. Each form2994

of the set directive is functionally equivalent to a matching runtime API routine.2995

Syntax2996

In C and C++, the syntax of the set directive is:2997

#pragma acc set [clause-list] new-line2998

In Fortran the syntax of the set directive is:2999

!$acc set [clause-list]3000

where clause is one of the following3001

default_async (int-expr)3002

device_num (int-expr)3003

device_type (device-type-list)3004

if(condition)3005

default async clause3006

The default_async clause specifies the asynchronous queue that is used if no queue appears3007

and changes the value of acc-default-async-var for the current thread to the argument value. If the3008

value is acc_async_default, the value of acc-default-async-var will revert to the initial value,3009

which is implementation-defined. A set default_async directive is functionally equivalent to3010

a call to the acc_set_default_async runtime API routine, as described in Section 3.2.14.3011

device num clause3012

The device_num clause specifies the device number to set as the default device for accelerator3013

regions and changes the value of acc-current-device-num-var for the current thread to the argument3014

value. If the value of device_num argument is negative, the runtime will revert to the default be-3015

havior, which is implementation-defined. A set device_num directive is functionally equivalent3016

to the acc_set_device_num runtime API routine, as described in Section 3.2.4.3017

device type clause3018

The device_type clause specifies the device type to set as the default device type for accelerator3019

regions and sets the value of acc-current-device-type-var for the current thread to the argument3020

value. If the value of the device_type argument is zero or the clause does not appear, the3021

selected device number will be used for all attached accelerator types. A set device_type3022

directive is functionally equivalent to a call to the acc_set_device_type runtime API routine,3023

as described in Section 3.2.2.3024

if clause3025

The if clause is optional; when there is no if clause, the implementation will generate code to3026

perform the set operation unconditionally. When an if clause appears, the implementation will3027

generate code to conditionally perform the set operation only when the condition evaluates to true.3028

84

The OpenACC® API Version Technical Report 24-1 2.14. Executable Directives

Restrictions3029

• This directive may only appear in code executed on the host.3030

• Passing default_async the value of acc_async_noval has no effect.3031

• Passing default_async the value of acc_async_sync will cause all asynchronous3032

directives in the default asynchronous queue to become synchronous.3033

• Passing default_async the value of acc_async_default will restore the default3034

asynchronous queue to the initial value, which is implementation-defined.3035

• At least one default_async, device_num, or device_type clause must appear.3036

• Two instances of the same clause may not appear on the same directive.3037

Errors3038

• An acc_error_device_type_unavailable error is issued if a device_type clause3039

appears, and no device of that device type is available.3040

• An acc_error_device_unavailable error is issued if a device_num clause ap-3041

pears, and the int-expr is not a valid device number.3042

• An acc_error_invalid_async error is issued if a default_async clause appears,3043

and the int-expr is not a valid async-argument.3044

See Section 5.2.2.3045

2.14.4 Update Directive3046

Summary3047

The update directive is used during the lifetime of accelerator data to update vars in local memory3048

with values from the corresponding data in device-accessible memory, or to update vars in device-3049

accessible memory with values from the corresponding data in local memory.3050

Syntax3051

In C and C++, the syntax of the update directive is:3052

#pragma acc update clause-list new-line3053

In Fortran the syntax of the update data directive is:3054

!$acc update clause-list3055

where clause is one of the following:3056

async [(int-expr)]3057

wait [(wait-argument)]3058

device_type(device-type-list)3059

if(condition)3060

if_present3061

self(var-list)3062

host(var-list)3063

device(var-list)3064

85

The OpenACC® API Version Technical Report 24-1 2.14. Executable Directives

Multiple subarrays of the same array may appear in a var-list of the same or different clauses on the3065

same directive. For any var in var-list that is in shared memory and that is not a captured variable,3066

no data action will occur. When a device clause appears, then for each var in the associated3067

var-list an transfer in action is performed.3068

When a host or self clause appears, then for each var in the associated var-list an transfer out3069

action is performed.3070

The transfer actions are performed in the order in which they appear on the directive, from left to3071

right.3072

Restrictions3073

• At least one self, host, or device clause must appear on an update directive.3074

self clause3075

The self clause specifies that, for data not in shared memory or for captured variables, a transfer out3076

action for the vars in var-list is performed. Otherwise, no action is taken.3077

An update directive with the self clause is equivalent to a call to the acc_update_self3078

routine, described in Section 3.2.20.3079

host clause3080

The host clause is a synonym for the self clause.3081

device clause3082

The device clause specifies that a transfer in action for the vars in var-list is performed for data3083

not in shared memory or for the captured variables. Otherwise, no action is taken.3084

An update directive with the device clause is equivalent to a call to the acc_update_device3085

routine, described in Section 3.2.20.3086

if clause3087

The if clause is optional; when there is no if clause, the implementation will generate code to3088

perform the updates unconditionally. When an if clause appears, the implementation will generate3089

code to conditionally perform the updates only when the condition evaluates to true.3090

async clause3091

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.3092

wait clause3093

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.3094

if present clause3095

When an if_present clause appears on the directive, no action is taken for a var which appears3096

in var-list that is not present in the device-accessible memory of the current device.3097

86

The OpenACC® API Version Technical Report 24-1 2.14. Executable Directives

Restrictions3098

• The update directive is executable. It must not appear in place of the statement following3099

an if, while, do, switch, or label in C or C++, or in place of the statement following a logical3100

if in Fortran.3101

• If no if_present clause appears on the directive, each var in var-list must be present in3102

the device-accessible memory of the current device.3103

• Only the async and wait clauses may follow a device_type clause.3104

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical3105

value; in C or C++, the condition must evaluate to a scalar integer value.3106

• Noncontiguous subarrays may appear. It is implementation-specific whether noncontiguous3107

regions are updated by using one transfer for each contiguous subregion, or whether the non-3108

contiguous data is packed, transferred once, and unpacked, or whether one or more larger3109

subarrays (no larger than the smallest contiguous region that contains the specified subarray)3110

are updated.3111

• In C and C++, a member of a struct or class may appear, including a subarray of a member.3112

Members of a subarray of struct or class type may not appear.3113

• In C and C++, if a subarray notation is used for a struct member, subarray notation may not3114

be used for any parent of that struct member.3115

• In Fortran, members of variables of derived type may appear, including a subarray of a mem-3116

ber. Members of subarrays of derived type may not appear.3117

• In Fortran, if array or subarray notation is used for a derived type member, array or subarray3118

notation may not be used for a parent of that derived type member.3119

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in self,3120

host, and device clauses.3121

Errors3122

• An acc_error_not_present error is issued if no if_present clause appears and3123

any var in a device or self clause is not present on the current device.3124

• An acc_error_partly_present error is issued if part of var is present in the current3125

device memory but all of var is not.3126

• An async or wait clause can cause an error to be issued; see Sections 2.16.1 and 2.16.2.3127

See Section 5.2.2.3128

2.14.5 Wait Directive3129

See Section 2.16 Asynchronous Behavior for more information.3130

2.14.6 Enter Data Directive3131

See Section 2.6.6 Enter Data and Exit Data Directives for more information.3132

87

The OpenACC® API Version Technical Report 24-1 2.15. Procedure Calls in Compute Regions

2.14.7 Exit Data Directive3133

See Section 2.6.6 Enter Data and Exit Data Directives for more information.3134

2.15 Procedure Calls in Compute Regions3135

This section describes how routines are compiled for an accelerator and how procedure calls are3136

compiled in compute regions. See Section 2.17.1 Optional Arguments for discussion of Fortran3137

optional arguments in procedure calls inside compute regions.3138

2.15.1 Routine Directive3139

Summary3140

The routine directive is used to tell the compiler to compile the definition for a procedure, such3141

as a function or C++ lambda, for an accelerator as well as for the host. The routine directive is3142

also used to tell the compiler the attributes of the procedure when called on the accelerator.3143

Syntax3144

In C and C++, the syntax of the routine directive is:3145

#pragma acc routine clause-list new-line3146

#pragma acc routine(name) clause-list new-line3147

In C and C++, the routine directive without a name may appear immediately before a function3148

definition, a function prototype, or a C++ lambda and applies to the function or C++ lambda. The3149

routine directive with a name may appear anywhere that a function prototype is allowed and3150

applies to the function or the C++ lambda in scope with that name. See Section A.3.4 for recom-3151

mended diagnostics for a routine directive with a name.3152

In Fortran the syntax of the routine directive is:3153

!$acc routine clause-list3154

!$acc routine(name) clause-list3155

In Fortran, the routine directive without a name may appear within the specification part of a3156

subroutine or function definition, or within an interface body for a subroutine or function in an3157

interface block, and applies to the containing subroutine or function. The routine directive with3158

a name may appear in the specification part of a subroutine, function or module, and applies to the3159

named subroutine or function.3160

The clause is one of the following:3161

gang [(dim:int-expr)]3162

worker3163

vector3164

seq3165

bind(name)3166

bind(string)3167

device_type(device-type-list)3168

nohost3169

A gang, worker, vector, or seq clause specifies the level of parallelism in the routine.3170

88

The OpenACC® API Version Technical Report 24-1 2.15. Procedure Calls in Compute Regions

A procedure compiled with the routine directive for an accelerator is called an accelerator rou-3171

tine.3172

If no explicit routine directive applies to a procedure whose definition appears in the program unit3173

being compiled, then the implementation applies an implicit routine directive to that procedure3174

if any of the following conditions holds:3175

• The procedure is called or its address is accessed in a compute region.3176

• The procedure is a C++ lambda defined in an accelerator routine that has a nohost clause,3177

which is considered relevant below.3178

• The procedure is a C++ lambda that is the parent compute scope of either:3179

– A loop construct. If it is data-independent, then its explicit gang, worker, and3180

vector clauses are considered relevant below.3181

– A call to an accelerator routine whose routine directive has a gang, worker,3182

vector, or nohost clause, each of which is considered relevant below.3183

From the set containing seq and all relevant clauses identified above, the implicit routine direc-3184

tive then copies any nohost clause and the highest level-of-parallelism clause.3185

The implementation may apply predetermined routine directives with a seq clause to any pro-3186

cedures that it provides for an accelerator, such as those of base language standard libraries.3187

Note: Important consequences of the above specification are:3188

• An implicit routine directive always has only a seq clause if the procedure is not a lambda.3189

• Before determining an implicit routine directive for a lambda, the implementation must3190

analyze auto clauses to determine if the lambda’s orphaned loop constructs are data-3191

independent (see the auto clause example later in this section).3192

• When the implementation applies an implicit routine directive to a procedure, it must3193

recursively apply implicit routine directives to other procedures for which the above rules3194

specify relevant dependencies. Such dependencies can form a cycle, so the implementation3195

must take care to avoid infinite recursion.3196

gang clause3197

The associated dimension is the value of the dim clause, if it appears, or is dimension one. The3198

dim argument must be a constant positive integer with value 1, 2, or 3.3199

The gang clause with dimension d specifies that the procedure can be the parent compute scope3200

of a loop or a call to a routine with a gang clause associated with dimension d or less, but it must3201

not be the parent compute scope of a loop or a call to a routine with a gang clause with dimension3202

greater than d.3203

worker clause3204

The worker clause specifies that the procedure can be the parent compute scope of a loop or a call3205

to a routine with a worker clause, but it must not be the parent compute scope of a loop or a call3206

to a routine with a gang clause. A loop in this procedure with an auto clause may be selected by3207

the compiler to execute in worker or vector mode. A call to this procedure must appear in code3208

89

The OpenACC® API Version Technical Report 24-1 2.15. Procedure Calls in Compute Regions

that is executed in worker-single mode, though it may be in gang-redundant or gang-partitioned3209

mode. For instance, a procedure with a routine worker directive may be called from within a3210

loop that has the gang clause, but not from within a loop that has the worker clause.3211

vector clause3212

The vector clause specifies that the procedure can be the parent compute scope of a loop or a3213

call to a routine with a vector clause, but it must not be the parent compute scope of a loop or3214

a call to a routine with a gang or worker clause. A loop in this procedure with an auto clause3215

may be selected by the compiler to execute in vector mode, but not worker mode. A call to3216

this procedure must appear in code that is executed in vector-single mode, though it may be in3217

gang-redundant or gang-partitioned mode, and in worker-single or worker-partitioned mode. For3218

instance, a procedure with a routine vector directive may be called from within a loop that has3219

the gang clause or the worker clause, but not from within a loop that has the vector clause.3220

seq clause3221

The seq clause specifies that the procedure must not be the parent compute scope of a loop or a3222

call to a routine with a gang, worker, or vector clause. A loop in this procedure with an auto3223

clause will be executed in seq mode. A call to this procedure may appear in any mode.3224

bind clause3225

The bind clause specifies the name to use when calling the procedure on a device other than the3226

host. If the name is specified as an identifier, it is called as if that name were specified in the3227

language being compiled. If the name is specified as a string, the string is used for the procedure3228

name unmodified. A bind clause on a procedure definition behaves as if it had appeared on a3229

declaration by changing the name used to call the procedure on a device other than the host; however,3230

the procedure is not compiled for the device with either the original name or the name in the bind3231

clause.3232

If there is both a Fortran bind and an acc bind clause for a procedure definition then a call on the3233

host will call the Fortran bound name and a call on another device will call the name in the bind3234

clause.3235

device type clause3236

The device_type clause is described in Section 2.4 Device-Specific Clauses.3237

nohost clause3238

The nohost clause tells the compiler not to compile a version of this procedure for the host.3239

Restrictions3240

• Only the gang, worker, vector, seq and bind clauses may follow a device_type3241

clause.3242

• Exactly one of the gang, worker, vector, or seq clauses must appear.3243

• In C and C++, function static variables are not supported in functions to which a routine3244

directive applies.3245

90

The OpenACC® API Version Technical Report 24-1 2.15. Procedure Calls in Compute Regions

• In Fortran, variables with the save attribute, either explicitly or implicitly, are not supported3246

in subprograms to which a routine directive applies.3247

• A call to a procedure with a nohost clause must not appear in a compute construct that is3248

compiled for the host. See examples below.3249

• If a call to a procedure with a nohost clause appears in another procedure but outside any3250

compute construct, that other procedure must also have a nohost clause.3251

• A call to a procedure with a gang(dim:d) clause must appear in code that is executed3252

in gang-redundant mode in all dimensions d and lower. For instance, a procedure with a3253

gang(dim:2) clause may not be called from within a loop that has a gang(dim:1)3254

or a gang(dim:2) clause. The user needs to ensure that a call to a procedure with a3255

gang(dim:d) clause, when present in a region executing in GRe or GPe mode with e > d3256

and called by a gang along dimension e, is executed by all of its corresponding gangs along3257

dimension d.3258

• A bind clause may not bind to a routine name that has a visible bind clause.3259

• If a procedure has a bind clause on both the declaration and the definition then they both3260

must bind to the same name.3261

• In C and C++, a definition or use of a procedure must appear within the scope of at least3262

one explicit and applying routine directive if any appears in the same compilation unit.3263

An explicit routine directive’s scope is from the directive to the end of the compilation3264

unit. If the routine directive appears in the member list of a C++ class, then its scope also3265

extends in the same manner as any class member’s scope (e.g., it includes the bodies of all3266

other member functions).3267

H H
3268

Examples3269

3270

• A function, such as f below, requires a nohost clause if it contains accelerator-specific code3271

that cannot be compiled for the host. By default, some implementations compile all compute3272

constructs for the host in addition to accelerators. In that case, a call to f must not appear in3273

any compute construct or compilation will fail. However, f can appear in the bind clause of3274

another function, such as g below, that does not have a nohost clause, and a call to g can3275

appear in a compute construct. Thus, g is called when the compute construct is compiled for3276

the host, and f is called when the compute construct is compiled for accelerators.3277

#pragma acc routine seq nohost3278

void f() { /*accelerator implementation*/ }3279

3280

#pragma acc routine seq bind(f)3281

void g() { /*host implementation*/ }3282

3283

void h() {3284

#pragma acc parallel3285

g();3286

}3287

91

The OpenACC® API Version Technical Report 24-1 2.15. Procedure Calls in Compute Regions

• In C, the restriction that a function’s definitions and uses must appear within any applying3288

routine directive’s scope has a simple interpretation: the routine directive must appear3289

first. This interpretation seems intuitive for the common case in C where prototypes, defini-3290

tions, and routine directives for a function, such as f below, appear at global scope.3291

void f();3292

void scopeA() {3293

#pragma acc parallel3294

f(); // nonconforming3295

}3296

// The routine directive’s scope is not f’s full scope.3297

// Instead, it starts at the routine directive.3298

#pragma acc routine(f) gang3299

void scopeB() {3300

#pragma acc parallel3301

f(); // conforming3302

}3303

void f() {} // conforming3304

• C++ classes permit forward references from member function bodies to other members de-3305

clared later. For example, immediately within class A below, g’s scope does not start until3306

after f’s definition. Nevertheless, within f’s body, g is in scope throughout. The same is true3307

for g’s routine directive. Thus, f’s call to g is conforming.3308

class A {3309

void f() {3310

#pragma acc parallel3311

g(); // conforming3312

}3313

#pragma acc routine gang3314

void g();3315

};3316

• In some places, C++ classes do not permit forward references. For example, in the return type3317

of a member function, a member typedef that is declared later is not in scope. Likewise, g’s3318

definition below is not fully within the scope of g’s routine directive even though its body3319

is, so its definition is nonconforming.3320

class A {3321

#pragma acc routine(f) gang3322

void f() {} // conforming3323

void g() {} // nonconforming3324

#pragma acc routine(g) gang3325

};3326

• The C++ scope resolution operator and using directive do not affect the scope of routine3327

directives. For example, the routine directive below is specified for the name f, which3328

resolves to A::f. Every reference to both A::f and C::f afterward is in the routine3329

directive’s scope, but the routine directive always applies to A::f and never C::f even3330

when referenced as just f.3331

namespace A {3332

void f();3333

namespace B {3334

92

The OpenACC® API Version Technical Report 24-1 2.15. Procedure Calls in Compute Regions

#pragma acc routine(f) gang // applies to A::f3335

}3336

}3337

void g() {3338

#pragma acc parallel3339

A::f(); // conforming3340

}3341

void h() {3342

using A::f;3343

#pragma acc parallel3344

f(); // conforming3345

}3346

namespace C {3347

void f();3348

using namespace A::B;3349

void i() {3350

#pragma acc parallel3351

f(); // nonconforming3352

}3353

}3354

• Based on the specification of implicit gang clauses in Section 2.9.2, the implementation3355

must determine the implicit routine directive for a C++ lambda before it determines im-3356

plicit gang clauses on its orphaned loop constructs. This behavior minimizes the im-3357

plicit routine directive’s level of parallelism and thus maximizes the number of places3358

the lambda can be called. For example, the implicit routine directive for f below has only3359

a vector clause so that f can be called within gang or worker loops. An orphaned loop3360

construct has an implicit gang clause only if, as in h below, it does not have an explicit gang3361

clause but gang parallelism appears elsewhere in the lambda, such as the call to g.3362

// step 1: implicit #pragma acc routine vector3363

auto f = []() {3364

#pragma acc loop vector // step 2: no implicit gang clause3365

for (int i = 0; i < I; ++i)3366

;3367

};3368

3369

#pragma acc routine gang3370

void g();3371

3372

// step 1: implicit #pragma acc routine gang3373

auto h = []() {3374

#pragma acc loop // step 2: implicit gang clause3375

for (int i = 0; i < I; ++i)3376

;3377

g();3378

};3379

• As specified earlier in this section, before the implementation determines the implicit routine3380

directive for a C++ lambda, it must analyze auto clauses on its orphaned loop constructs.3381

This behavior can enable additional parallelism at the lambda’s call sites when the imple-3382

mentation cannot find parallelism within the lambda. For example, within f below, if the3383

implementation treats auto as seq, then f’s implicit routine directive has a seq clause,3384

93

The OpenACC® API Version Technical Report 24-1 2.15. Procedure Calls in Compute Regions

which permits the implementation to worker- or vector-partition h’s loop construct. If the3385

implementation instead treats f’s auto as independent, then f’s implicit routine di-3386

rective has a worker clause, so the implementation cannot worker- or vector-partition h’s3387

loop construct.3388

// step 2: implicit #pragma acc routine with seq or worker3389

auto f = []() {3390

// step 1: auto -> seq or independent3391

#pragma acc loop auto worker vector3392

for (int j = 0; j < J; ++j) {3393

// complex loop body3394

}3395

};3396

3397

#pragma acc routine seq3398

void g();3399

3400

void h() {3401

#pragma acc parallel num_gangs(NG)3402

// step 3: implicit gang, possibly worker or vector3403

#pragma acc loop3404

for (int i = 0; i < I; ++i) {3405

f();3406

g();3407

}3408

}3409

When combining auto and gang on a loop construct within a lambda, the above behavior3410

might expose portability issues across implementations. For example, if the user adds an3411

explicit gang clause to f’s loop construct, then whether the implementation treats f’s auto3412

as seq or independent determines whether f’s implicit routine directive has a seq3413

or gang clause. That determines whether h’s loop construct has an implicit gang clause,3414

which determines how many times g is called: I times in gang-partitioned mode, or NG*I3415

times in gang-redundant mode.3416

• By specifying a contract between a procedure and its callers, implicit routine directives3417

help to establish the semantics of OpenACC programs to facilitate both the user’s under-3418

standing of the behavior and also the implementation’s analysis and diagnostics. However,3419

as usual, the implementation is free to perform optimizations that preserve program seman-3420

tics. For example, the implicit routine directive for the C++ lambda f below has a seq3421

clause because f’s definition provides no means to determine a higher parallelism level and3422

because executing f’s loop constructs sequentially is compatible with any conceivable call3423

site. Nevertheless, observing that both of f’s loop constructs are data-independent and that3424

g’s call to f is in vector-single mode, the implementation might choose to inline a version of3425

f such that both loop constructs are vector-partitioned.3426

// implicit #pragma acc routine seq3427

auto f = []() {3428

#pragma acc loop auto // auto -> independent3429

for (int i = 0; i < I; ++i)3430

;3431

#pragma acc loop // implicit independent3432

for (int i = 0; i < I; ++i)3433

94

The OpenACC® API Version Technical Report 24-1 2.16. Asynchronous Behavior

;3434

};3435

void g() {3436

#pragma acc parallel loop gang worker3437

for (int i = 0; i < I; ++i)3438

f(); // can inline with vector partitioning3439

}3440

N N3441

2.15.2 Global Data Access3442

C or C++ global, file static, or extern variables or array, and Fortran module or common block vari-3443

ables or arrays, that are used in accelerator routines must appear in a declare directive in a create,3444

copyin, device_resident or link clause. If the data appears in a device_resident3445

clause, the routine directive for the procedure must include the nohost clause. If the data ap-3446

pears in a link clause, that data must have an active accelerator data lifetime by virtue of appearing3447

in a data clause for a data construct, compute construct, or enter data directive.3448

2.16 Asynchronous Behavior3449

This section describes the async clause, the wait clause, the wait directive, and the behavior of3450

programs that use asynchronous data movement, compute regions, and asynchronous API routines.3451

In this section and throughout the specification, the term async-argument means a nonnegative3452

scalar integer expression (int for C or C++, integer for Fortran), or one of the special values3453

acc_async_noval or acc_async_sync, as defined in the C header file and the Fortran3454

openacc module. The special values are negative values, so as not to conflict with a user-specified3455

nonnegative async-argument. An async-argument is used in async clauses, wait clauses, wait3456

directives, and as an argument to various runtime routines.3457

The async-value of an async-argument is3458

• acc_async_sync if async-argument has a value equal to the special value acc_async_sync,3459

• the value of acc-default-async-var if async-argument has a value equal to the special value3460

acc_async_noval,3461

• the value of the async-argument, if it is nonnegative,3462

• implementation-defined, otherwise.3463

The async-value is used to select the activity queue to which the clause or directive or API routine3464

refers. The properties of the current device and the implementation will determine how many actual3465

activity queues are supported, and how the async-value is mapped onto the actual activity queues.3466

Two asynchronous operations on the same device with the same async-value will be enqueued3467

onto the same activity queue, and therefore will be executed on the device in the order they are3468

encountered by the local thread. Two asynchronous operations with different async-values may be3469

enqueued onto different activity queues, and therefore may be executed on the device in either order3470

or concurrently relative to each other. If there are two or more host threads executing and sharing the3471

same device, asynchronous operations on any thread with the same async-value will be enqueued3472

onto the same activity queue. If the threads are not synchronized with respect to each other, the3473

operations may be enqueued in either order and therefore may execute on the device in either order.3474

95

The OpenACC® API Version Technical Report 24-1 2.16. Asynchronous Behavior

Asynchronous operations enqueued to difference devices may execute in any order or may execute3475

concurrently, regardless of the async-value used for each.3476

If a compute construct, data directive, or runtime API call has an async-value of acc_async_sync,3477

the associated operations are executed on the activity queue associated with the async-value3478

acc_async_sync, and the local thread will wait until the associated operations have completed3479

before executing the code following the construct or directive. If a data construct has an async-3480

value of acc_async_sync, the associated operations are executed on the activity queue associ-3481

ated with the async-value acc_async_sync, and the local thread will wait until the associated3482

operations that occur upon entry of the construct have completed before executing the code of the3483

construct’s structured block or block construct, and after that, will wait until the associated opera-3484

tions that occur upon exit of the construct have completed before executing the code following the3485

construct.3486

If a compute construct, data directive, or runtime API call has an async-value other than3487

acc_async_sync, the associated operations are executed on the activity queue associated with3488

that async-value and the associated operations may be processed asynchronously while the local3489

thread continues executing the code following the construct or directive. If a data construct has an3490

async-value other than acc_async_sync, the associated operations are executed on the activity3491

queue associated with that async-value, and the associated operations that occur upon entry of the3492

construct may be processed asynchronously while the local thread continues executing the code3493

of the construct’s structured block or block construct, and after that, the associated operations that3494

occur upon exit of the construct may be processed asynchronously while the local thread continues3495

executing the code following the construct.3496

In this section and throughout the specification, the term wait-argument, means:3497

[devnum : int-expr :] [queues :] async-argument-list3498

If a devnum modifier appears in the wait-argument then the associated device is the device with3499

that device number of the current device type. If no devnum modifier appears then the associated3500

device is the current device.3501

Each async-argument is associated with an async-value. The async-values select the associated3502

activity queue or queues on the associated device. If there is no async-argument-list, the associated3503

activity queues are all activity queues for the associated device.3504

The queues modifier within a wait-argument is optional to improve clarity of the expression list.3505

2.16.1 async clause3506

The async clause may appear on a parallel, serial, kernels, or data construct, or an3507

enter data, exit data, update, or wait directive. In all cases, the async clause is optional.3508

The async clause may have a single async-argument, as defined above. If the async clause does3509

not appear, the behavior is as if the async-argument is acc_async_sync. If the async clause3510

appears with no argument, the behavior is as if the async-argument is acc_async_noval. The3511

async-value for a construct or directive is defined in Section 2.16.3512

Errors3513

• An acc_error_invalid_async error is issued if an async clause with an argument3514

appears on any directive and the argument is not a valid async-argument.3515

See Section 5.2.2.3516

96

The OpenACC® API Version Technical Report 24-1 2.16. Asynchronous Behavior

2.16.2 wait clause3517

The wait clause may appear on a parallel, serial, or kernels, or data construct, or3518

an enter data, exit data, or update directive. In all cases, the wait clause is optional.3519

When there is no wait clause, the associated operations may be enqueued or launched or executed3520

immediately on the device.3521

If there is an argument to the wait clause, it must be a wait-argument, the associated device and3522

activity queues are as specified in the wait-argument; see Section 2.16. If there is no argument to3523

the wait clause, the associated device is the current device and associated activity queues are all3524

activity queues. The associated operations may not be launched or executed until all operations3525

already enqueued up to this point by this thread on the associated asynchronous device activity3526

queues have completed. Note: One legal implementation is for the local thread to wait until the3527

operations already enqueued on the associated asynchronous device activity queues have completed;3528

another legal implementation is for the local thread to enqueue the associated operations in such a3529

way that they will not start until the operations already enqueued on the associated asynchronous3530

device activity queues have completed.3531

Errors3532

• An acc_error_device_unavailable error is issued if a wait clause appears on any3533

directive with a devnum modifier and the associated int-expr is not a valid device number.3534

• An acc_error_invalid_async error is issued if a wait clause appears on any direc-3535

tive with a queues modifier or no modifier and any value in the associated list is not a valid3536

async-argument.3537

See Section 5.2.2.3538

2.16.3 Wait Directive3539

Summary3540

The wait directive causes the local thread or operations enqueued onto a device activity queue on3541

the current device to wait for completion of asynchronous operations.3542

Syntax3543

In C and C++, the syntax of the wait directive is:3544

#pragma acc wait [(wait-argument)] [clause-list] new-line3545

In Fortran the syntax of the wait directive is:3546

!$acc wait [(wait-argument)] [clause-list]3547

where clause is:3548

async [(async-argument)]3549

if(condition)3550

If it appears, the wait-argument is as defined in Section 2.16, and the associated device and activity3551

queues are as specified in the wait-argument. If there is no wait-argument clause, the associated3552

device is the current device and associated activity queues are all activity queues.3553

If there is no async clause, the local thread will wait until all operations enqueued by this thread3554

onto each of the associated device activity queues for the associated device have completed. There3555

97

The OpenACC® API Version Technical Report 24-1 2.17. Fortran Specific Behavior

is no guarantee that all the asynchronous operations initiated by other threads onto those queues will3556

have completed without additional synchronization with those threads.3557

If there is an async clause, no new operation may be launched or executed on the activity queue3558

associated with the async-argument on the current device until all operations enqueued up to this3559

point by this thread on the activity queues associated with the wait-argument have completed. Note:3560

One legal implementation is for the local thread to wait for all the associated activity queues; another3561

legal implementation is for the thread to enqueue a synchronization operation in such a way that3562

no new operation will start until the operations enqueued on the associated activity queues have3563

completed.3564

The if clause is optional; when there is no if clause, the implementation will generate code to3565

perform the wait operation unconditionally. When an if clause appears, the implementation will3566

generate code to conditionally perform the wait operation only when the condition evaluates to true.3567

A wait directive is functionally equivalent to a call to one of the acc_wait, acc_wait_async,3568

acc_wait_all, or acc_wait_all_async runtime API routines, as described in Sections 3.2.103569

and 3.2.11.3570

Errors3571

• An acc_error_device_unavailable error is issued if a devnum modifier appears3572

and the int-expr is not a valid device number.3573

• An acc_error_invalid_async error is issued if a queues modifier or no modifier3574

appears and any value in the associated list is not a valid async-argument.3575

See Section 5.2.2.3576

2.17 Fortran Specific Behavior3577

2.17.1 Optional Arguments3578

This section refers to the Fortran intrinsic function PRESENT. A call to the Fortran intrinsic function3579

PRESENT(arg) returns .true., if arg is an optional dummy argument and an actual argument3580

for argwas present in the argument list of the call site. This is unrelated to the OpenACC present3581

data clause.3582

The appearance of a Fortran optional argument arg as a var in any of the following clauses has no3583

effect at runtime if PRESENT(arg) is .false.:3584

• in data clauses on compute and data constructs;3585

• in data clauses on enter data and exit data directives;3586

• in data and device_resident clauses on declare directives;3587

• in use_device clauses on host_data directives;3588

• in self, host, and device clauses on update directives.3589

The appearance of a Fortran optional argument arg in the following situations may result in unde-3590

fined behavior if PRESENT(arg) is .false. when the associated construct is executed:3591

• as a var in private, firstprivate, and reduction clauses;3592

• as a var in cache directives;3593

98

The OpenACC® API Version Technical Report 24-1 2.17. Fortran Specific Behavior

• as part of an expression in any clause or directive.3594

A call to the Fortran intrinsic function PRESENT behaves the same way in a compute construct or3595

an accelerator routine as on the host. The function call PRESENT(arg)must return the same value3596

in a compute construct as PRESENT(arg) would outside of the compute construct. If a Fortran3597

optional argument arg appears as an actual argument in a procedure call in a compute construct3598

or an accelerator routine, and the associated dummy argument subarg also has the optional3599

attribute, then PRESENT(subarg) returns the same value as PRESENT(subarg) would when3600

executed on the host.3601

2.17.2 Do Concurrent Construct3602

This section refers to the Fortran do concurrent construct that is a form of do construct. When3603

do concurrent appears without a loop construct in a kernels construct it is treated as if it is3604

annotated with loop auto. If it appears in a parallel construct or an accelerator routine then3605

it is treated as if it is annotated with loop independent.3606

99

The OpenACC® API Version Technical Report 24-1 2.17. Fortran Specific Behavior

100

The OpenACC® API Version Technical Report 24-1 3.1. Runtime Library Definitions

3. Runtime Library3607

This chapter describes the OpenACC runtime library routines that are available for use by program-3608

mers. Use of these routines may limit portability to systems that do not support the OpenACC API.3609

Conditional compilation using the _OPENACC preprocessor variable may preserve portability.3610

This chapter has two sections:3611

• Runtime library definitions3612

• Runtime library routines3613

There are four categories of runtime routines:3614

• Device management routines, to get the number of devices, set the current device, and so on.3615

• Asynchronous queue management, to synchronize until all activities on an async queue are3616

complete, for instance.3617

• Device test routine, to test whether this statement is executing on the device or not.3618

• Data and memory management, to manage memory allocation or copy data between memo-3619

ries.3620

3.1 Runtime Library Definitions3621

In C and C++, prototypes for the runtime library routines described in this chapter are provided in3622

a header file named openacc.h. All the library routines are extern functions with “C” linkage.3623

This file defines:3624

• The prototypes of all routines in the chapter.3625

• Any datatypes used in those prototypes, including an enumeration type to describe the sup-3626

ported device types.3627

• The values of acc_async_noval, acc_async_sync, and acc_async_default.3628

In Fortran, interface declarations are provided in a Fortran module named openacc. The openacc3629

module defines:3630

• The integer parameter openacc_versionwith a value yyyymm where yyyy and mm are the3631

year and month designations of the version of the Accelerator programming model supported.3632

This value matches the value of the preprocessor variable _OPENACC.3633

• Interfaces for all routines in the chapter.3634

• Integer parameters to define integer kinds for arguments to and return values for those rou-3635

tines.3636

• Integer parameters to describe the supported device types.3637

• Integer parameters to define the values of acc_async_noval, acc_async_sync, and3638

acc_async_default.3639

101

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Many of the routines accept or return a value corresponding to the type of device. In C and C++, the3640

datatype used for device type values is acc_device_t; in Fortran, the corresponding datatype3641

is integer(kind=acc_device_kind). The possible values for device type are implemen-3642

tation specific, and are defined in the C or C++ include file openacc.h and the Fortran module3643

openacc. Five values are always supported: acc_device_none, acc_device_default,3644

acc_device_host, acc_device_not_host, and acc_device_current. For other val-3645

ues, look at the appropriate files included with the implementation, or read the documentation for3646

the implementation. The value acc_device_default will never be returned by any function;3647

its use as an argument will tell the runtime library to use the default device type for that implemen-3648

tation.3649

3.2 Runtime Library Routines3650

In this section, for the C and C++ prototypes, pointers are typed h_void* or d_void* to desig-3651

nate a host memory address or device memory address, when these calls are executed on the host,3652

as if the following definitions were included:3653

#define h_void void3654

#define d_void void3655

Many Fortran API bindings defined in this section rely on types defined in Fortran’s iso_c_binding3656

module. It is implied that the iso_c_binding module is used in these bindings, even if not ex-3657

plicitly stated in the format section for that routine.3658

Restrictions3659

Except for acc_on_device, these routines are only available on the host.3660

3.2.1 acc get num devices3661

Summary3662

The acc_get_num_devices routine returns the number of available devices of the given type.3663

Format3664

C or C++:3665

int acc_get_num_devices(acc_device_t dev_type);3666

Fortran:3667

integer function acc_get_num_devices(dev_type)3668

integer(acc_device_kind) :: dev_type3669

Description3670

The acc_get_num_devices routine returns the number of available devices of device type3671

dev_type. If device type dev_type is not supported or no device of dev_type is available,3672

this routine returns zero.3673

3.2.2 acc set device type3674

Summary3675

The acc_set_device_type routine tells the runtime which type of device to use when exe-3676

cuting a compute region and sets the value of acc-current-device-type-var. This is useful when the3677

implementation allows the program to be compiled to use more than one type of device.3678

102

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Format3679

C or C++:3680

void acc_set_device_type(acc_device_t dev_type);3681

Fortran:3682

subroutine acc_set_device_type(dev_type)3683

integer(acc_device_kind) :: dev_type3684

Description3685

A call to acc_set_device_type is functionally equivalent to a set device_type(dev_type)3686

directive, as described in Section 2.14.3. This routine tells the runtime which type of device to use3687

among those available and sets the value of acc-current-device-type-var for the current thread to3688

dev_type.3689

Restrictions3690

• If some compute regions are compiled to only use one device type, the result of calling this3691

routine with a different device type may produce undefined behavior.3692

Errors3693

• An acc_error_device_type_unavailable error is issued if device type dev_type3694

is not supported or no device of dev_type is available.3695

See Section 5.2.2.3696

3.2.3 acc get device type3697

Summary3698

The acc_get_device_type routine returns the value of acc-current-device-type-var, which is3699

the device type of the current device. This is useful when the implementation allows the program to3700

be compiled to use more than one type of device.3701

Format3702

C or C++:3703

acc_device_t acc_get_device_type(void);3704

Fortran:3705

function acc_get_device_type()3706

integer(acc_device_kind) :: acc_get_device_type3707

Description3708

The acc_get_device_type routine returns the value of acc-current-device-type-var for the3709

current thread to tell the program what type of device will be used to run the next compute region, if3710

one has been selected. The device type may have been selected by the program with a runtime API3711

call or a directive, by an environment variable, or by the default behavior of the implementation; see3712

the table in Section 2.3.1.3713

Restrictions3714

• If the device type has not yet been selected, the value acc_device_none may be returned.3715

103

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

3.2.4 acc set device num3716

Summary3717

The acc_set_device_num routine tells the runtime which device to use and sets the value of3718

acc-current-device-num-var.3719

Format3720

C or C++:3721

void acc_set_device_num(int dev_num, acc_device_t dev_type);3722

Fortran:3723

subroutine acc_set_device_num(dev_num, dev_type)3724

integer :: dev_num3725

integer(acc_device_kind) :: dev_type3726

Description3727

A call to acc_set_device_num is functionally equivalent to a set device_type(dev_type)3728

device_num(dev_num) directive, as described in Section 2.14.3. This routine tells the runtime3729

which device to use among those available of the given type for compute or data regions in the cur-3730

rent thread and sets the value of acc-current-device-num-var to dev_num. If the value of dev_num3731

is negative, the runtime will revert to its default behavior, which is implementation-defined. If the3732

value of the dev_type is zero, the selected device number will be used for all device types. Calling3733

acc_set_device_num implies a call to acc_set_device_type(dev_type).3734

Errors3735

• An acc_error_device_type_unavailable error is issued if device type dev_type3736

is not supported or no device of dev_type is available.3737

• An acc_error_device_unavailable error is issued if the value of dev_num is not3738

a valid device number.3739

See Section 5.2.2.3740

3.2.5 acc get device num3741

Summary3742

The acc_get_device_num routine returns the value of acc-current-device-num-var for the cur-3743

rent thread.3744

Format3745

C or C++:3746

int acc_get_device_num(acc_device_t dev_type);3747

Fortran:3748

integer function acc_get_device_num(dev_type)3749

integer(acc_device_kind) :: dev_type3750

Description3751

The acc_get_device_num routine returns the value of acc-current-device-num-var for the cur-3752

rent thread. If there are no devices of device type dev_type or if device type dev_type is not3753

supported, this routine returns -1.3754

104

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

3.2.6 acc get property3755

Summary3756

The acc_get_property and acc_get_property_string routines return the value of a3757

device-property for the specified device.3758

Format3759

C or C++:

size_t acc_get_property(int dev_num,

acc_device_t dev_type,

acc_device_property_t property);

const

char* acc_get_property_string(int dev_num,

acc_device_t dev_type,

acc_device_property_t property);3760

Fortran:

function acc_get_property(dev_num, dev_type, property)

subroutine acc_get_property_string(dev_num, dev_type,&

property, string)3761

integer, value :: dev_num3762

integer(acc_device_kind), value :: dev_type3763

integer(acc_device_property_kind), value :: property3764

integer(c_size_t) :: acc_get_property3765

character*(*) :: string3766

Description3767

The acc_get_property and acc_get_property_string routines return the value of the3768

property. dev_num and dev_type specify the device being queried. If dev_type has the3769

value acc_device_current, then dev_num is ignored and the value of the property for the3770

current device is returned. property is an enumeration constant, defined in openacc.h, for3771

C or C++, or an integer parameter, defined in the openacc module, for Fortran. Integer-valued3772

properties are returned by acc_get_property, and string-valued properties are returned by3773

acc_get_property_string. In Fortran, acc_get_property_string returns the result3774

into the string argument.3775

The supported values of property are given in the following table.3776

property return type return value

acc_property_memory integer size of device memory in bytes

acc_property_free_memory integer free device memory in bytes

acc_property_shared_memory_support

integer nonzero if the specified device sup-

ports sharing memory with the local

thread

acc_property_name string device name

acc_property_vendor string device vendor

acc_property_driver string device driver version

3777

An implementation may support additional properties for some devices.3778

105

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Restrictions3779

• acc_get_propertywill return 0 and acc_get_property_stringwill return a null3780

pointer (in C or C++) or a blank string (in Fortran) in the following cases:3781

– If device type dev_type is not supported or no device of dev_type is available.3782

– If the value of dev_num is not a valid device number for device type dev_type.3783

– If the value of property is not one of the known values for that query routine, or that3784

property has no value for the specified device.3785

3.2.7 acc init3786

Summary3787

The acc_init and acc_init_device routines initialize the runtime for the specified device3788

type and device number. This can be used to isolate any initialization cost from the computational3789

cost, such as when collecting performance statistics.3790

Format3791

C or C++:3792

void acc_init(acc_device_t dev_type);3793

void acc_init_device(int dev_num, acc_device_t dev_type);3794

Fortran:3795

subroutine acc_init(dev_type)3796

subroutine acc_init_device(dev_num, dev_type)3797

integer :: dev_num3798

integer(acc_device_kind) :: dev_type3799

Description3800

A call to acc_init or acc_init_device is functionally equivalent to an init directive with3801

matching dev_type and dev_num arguments, as described in Section 2.14.1. dev_type must3802

be one of the defined accelerator types. dev_num must be a valid device number of the device type3803

dev_type. These routines also implicitly call acc_set_device_type(dev_type). In the3804

case of acc_init_device, acc_set_device_num(dev_num) is also called.3805

If a program initializes one or more devices without an intervening shutdown directive or3806

acc_shutdown call to shut down those same devices, no action is taken.3807

Errors3808

• An acc_error_device_type_unavailable error is issued if device type dev_type3809

is not supported or no device of dev_type is available.3810

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3811

number.3812

See Section 5.2.2.3813

3.2.8 acc shutdown3814

106

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Summary3815

The acc_shutdown and acc_shutdown_device routines shut down the connection to spec-3816

ified devices and free up any related resources in the runtime. This ends all data lifetimes in device3817

memory for the device or devices that are shut down, which effectively sets structured and dynamic3818

reference counters to zero.3819

Format3820

C or C++:3821

void acc_shutdown(acc_device_t dev_type);3822

void acc_shutdown_device(int dev_num, acc_device_t dev_type);3823

Fortran:3824

subroutine acc_shutdown(dev_type)3825

subroutine acc_shutdown_device(dev_num, dev_type)3826

integer :: dev_num3827

integer(acc_device_kind) :: dev_type3828

Description3829

A call to acc_shutdown or acc_shutdown_device is functionally equivalent to a shutdown3830

directive, with matching dev_type and dev_num arguments, as described in Section 2.14.2.3831

dev_type must be one of the defined accelerator types. dev_num must be a valid device number3832

of the device type dev_type. acc_shutdown routine disconnects the program from all devices3833

of device type dev_type. The acc_shutdown_device routine disconnects the program from3834

dev_num of type dev_type. Any data that is present in the memory of a device that is shut down3835

is immediately deallocated.3836

Restrictions3837

• This routine may not be called while a compute region is executing on a device of type3838

dev_type.3839

• If the program attempts to execute a compute region on a device or to access any data in the3840

memory of a device that was shut down, the behavior is undefined.3841

• If the program attempts to shut down the acc_device_host device type, the behavior is3842

undefined.3843

Errors3844

• An acc_error_device_type_unavailable error is issued if device type dev_type3845

is not supported or no device of dev_type is available.3846

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3847

number.3848

• An acc_error_device_shutdown error is issued if there is an error shutting down the3849

device.3850

See Section 5.2.2.3851

3.2.9 acc async test3852

Summary3853

The acc_async_test routines test for completion of all associated asynchronous operations for3854

a single specified async queue or for all async queues on the current device or on a specified device.3855

107

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Format3856

C or C++:3857

int acc_async_test(int wait_arg);3858

int acc_async_test_device(int wait_arg, int dev_num);3859

int acc_async_test_all(void);3860

int acc_async_test_all_device(int dev_num);3861

Fortran:3862

logical function acc_async_test(wait_arg)3863

logical function acc_async_test_device(wait_arg, dev_num)3864

logical function acc_async_test_all()3865

logical function acc_async_test_all_device(dev_num)3866

integer(acc_handle_kind) :: wait_arg3867

integer :: dev_num3868

Description3869

wait_argmust be an async-argument as defined in Section 2.16 Asynchronous Behavior. dev_num3870

must be a valid device number of the current device type.3871

The behavior of the acc_async_test routines is:3872

• If there is no dev_num argument, it is treated as if dev_num is the current device number.3873

• If any asynchronous operations initiated by this host thread on device dev_num either on3874

async queue wait_arg (if there is a wait_arg argument), or on any async queue (if there3875

is no wait_arg argument) have not completed, a call to the routine returns false.3876

• If all such asynchronous operations have completed, or there are no such asynchronous op-3877

erations, a call to the routine returns true. A return value of true is no guarantee that asyn-3878

chronous operations initiated by other host threads have completed.3879

Errors3880

• An acc_error_invalid_async error is issued if wait_arg is not a valid async-3881

argument value.3882

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3883

number.3884

See Section 5.2.2.3885

3.2.10 acc wait3886

Summary3887

The acc_wait routines wait for completion of all associated asynchronous operations on a single3888

specified async queue or on all async queues on the current device or on a specified device.3889

Format3890

C or C++:3891

void acc_wait(int wait_arg);3892

void acc_wait_device(int wait_arg, int dev_num);3893

void acc_wait_all(void);3894

void acc_wait_all_device(int dev_num);3895

108

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Fortran:3896

subroutine acc_wait(wait_arg)3897

subroutine acc_wait_device(wait_arg, dev_num)3898

subroutine acc_wait_all()3899

subroutine acc_wait_all_device(dev_num)3900

integer(acc_handle_kind) :: wait_arg3901

integer :: dev_num3902

Description3903

A call to an acc_wait routine is functionally equivalent to a wait directive as follows, see Sec-3904

tion 2.16.3:3905

• acc_wait to a wait(wait_arg) directive.3906

• acc_wait_device to a wait(devnum:dev_num, queues:wait_arg) directive.3907

• acc_wait_all to a wait directive with no wait-argument.3908

• acc_wait_all_device to a wait(devnum:dev_num) directive.3909

wait_argmust be an async-argument as defined in Section 2.16 Asynchronous Behavior. dev_num3910

must be a valid device number of the current device type.3911

The behavior of the acc_wait routines is:3912

• If there is no dev_num argument, it is treated as if dev_num is the current device number.3913

• The routine will not return until all asynchronous operations initiated by this host thread on3914

device dev_num either on async queue wait_arg (if there is a wait_arg argument) or3915

on all async queues (if there is no wait_arg argument) have completed.3916

• If two or more threads share the same accelerator, there is no guarantee that matching asyn-3917

chronous operations initiated by other threads have completed.3918

For compatibility with OpenACC version 1.0, acc_waitmay also be spelled acc_async_wait,3919

and acc_wait_all may also be spelled acc_async_wait_all.3920

Errors3921

• An acc_error_invalid_async error is issued if wait_arg is not a valid async-3922

argument value.3923

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3924

number.3925

See Section 5.2.2.3926

3.2.11 acc wait async3927

Summary3928

The acc_wait_async routines enqueue a wait operation on one async queue of the current3929

device or a specified device for the operations previously enqueued on a single specified async3930

queue or on all other async queues.3931

109

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Format3932

C or C++:

void acc_wait_async(int wait_arg, int async_arg);

void acc_wait_device_async(int wait_arg, int async_arg,

int dev_num);3933

void acc_wait_all_async(int async_arg);3934

void acc_wait_all_device_async(int async_arg, int dev_num);3935

Fortran:3936

subroutine acc_wait_async(wait_arg, async_arg)3937

subroutine acc_wait_device_async(wait_arg, async_arg, dev_num)3938

subroutine acc_wait_all_async(async_arg)3939

subroutine acc_wait_all_device_async(async_arg, dev_num)3940

integer(acc_handle_kind) :: wait_arg, async_arg3941

integer :: dev_num3942

Description3943

A call to an acc_wait_async routine is functionally equivalent to a wait async(async_arg)3944

directive as follows, see Section 2.16.3:3945

• A call to acc_wait_async is functionally equivalent to a wait(wait_arg)3946

async(async_arg) directive.3947

• A call to acc_wait_device_async is functionally equivalent to a wait(devnum:3948

dev_num, queues:wait_arg) async(async_arg) directive.3949

• A call to acc_wait_all_async is functionally equivalent to a wait async(async_arg)3950

directive with no wait-argument.3951

• A call to acc_wait_all_device_async is functionally equivalent to a3952

wait(devnum:dev_num) async(async_arg) directive.3953

async_arg and wait_arg must must be async-arguments, as defined in3954

Section 2.16 Asynchronous Behavior. dev_num must be a valid device number of the current3955

device type.3956

The behavior of the acc_wait_async routines is:3957

• If there is no dev_num argument, it is treated as if dev_num is the current device number.3958

• The routine will enqueue a wait operation on the async queue associated with async_arg3959

for the current device which will wait for operations initiated on the async queue wait_arg3960

of device dev_num (if there is a wait_arg argument), or for each async queue of device3961

dev_num (if there is no wait_arg argument).3962

See Section 2.16 Asynchronous Behavior for more information.3963

Errors3964

• An acc_error_invalid_async error is issued if either async_arg or wait_arg is3965

not a valid async-argument value.3966

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3967

number.3968

See Section 5.2.2.3969

110

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

3.2.12 acc wait any3970

Summary3971

The acc_wait_any and acc_wait_any_device routines wait for any of the specified asyn-3972

chronous queues to complete all pending operations on the current device or the specified device3973

number, respectively. Both routines return the queue’s index in the provided array of asynchronous3974

queues.3975

Format3976

C or C++:3977

int acc_wait_any(int count, int wait_arg[]);3978

int acc_wait_any_device(int count, int wait_arg[], int dev_num);3979

Fortran:3980

integer function acc_wait_any(count, wait_arg)3981

integer function acc_wait_any_device(count, wait_arg, dev_num)3982

integer :: count, dev_num3983

integer(acc_handle_kind) :: wait_arg(count)3984

Description3985

wait_arg is an array of async-arguments as defined in Section 2.16 and count is a nonneg-3986

ative integer indicating the array length. If there is no dev_num argument, it is treated as if3987

dev_num is the current device number. Otherwise, dev_num must be a valid device number3988

of the current device type. A call to any of these routines returns an index i associated with3989

a wait_arg[i] that is not acc_async_sync and meets the conditions that would evalu-3990

ate acc_async_test_device(wait_arg[i], dev_num) to true. If all the elements in3991

wait_arg are equal to acc_async_sync or count is equal to 0, these routines return -1.3992

Otherwise, the return value is an integer in the range of 0 ≤ i < count in C or C++ and3993

1 ≤ i ≤ count in Fortran.3994

Errors3995

• An acc_error_invalid_argument error is issued if count is a negative number.3996

• An acc_error_invalid_async error is issued if any element encountered in wait_arg3997

is not a valid async-argument value.3998

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3999

number.4000

See Section 5.2.2.4001

3.2.13 acc get default async4002

Summary4003

The acc_get_default_async routine returns the value of acc-default-async-var for the cur-4004

rent thread.4005

Format4006

C or C++:4007

int acc_get_default_async(void);4008

111

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Fortran:4009

function acc_get_default_async()4010

integer(acc_handle_kind) :: acc_get_default_async4011

Description4012

The acc_get_default_async routine returns the value of acc-default-async-var for the cur-4013

rent thread, which is the asynchronous queue used when an async clause appears without an4014

async-argument or with the value acc_async_noval.4015

3.2.14 acc set default async4016

Summary4017

The acc_set_default_async routine tells the runtime which asynchronous queue to use4018

when an async clause appears with no queue argument.4019

Format4020

C or C++:4021

void acc_set_default_async(int async_arg);4022

Fortran:4023

subroutine acc_set_default_async(async_arg)4024

integer(acc_handle_kind) :: async_arg4025

Description4026

A call to acc_set_default_async is functionally equivalent to a set default_async(async_arg)4027

directive, as described in Section 2.14.3. This acc_set_default_async routine tells the4028

runtime to place any directives with an async clause that does not have an async-argument or4029

with the special acc_async_noval value into the asynchronous activity queue associated with4030

async_arg instead of the default asynchronous activity queue for that device by setting the value4031

of acc-default-async-var for the current thread. The special argument acc_async_defaultwill4032

reset the default asynchronous activity queue to the initial value, which is implementation-defined.4033

Errors4034

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4035

argument value.4036

See Section 5.2.2.4037

3.2.15 acc on device4038

Summary4039

The acc_on_device routine tells the program whether it is executing on a particular device.4040

Format4041

C or C++:4042

int acc_on_device(acc_device_t dev_type);4043

Fortran:4044

logical function acc_on_device(dev_type)4045

integer(acc_device_kind) :: dev_type4046

112

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Description4047

The acc_on_device routine may be used to execute different paths depending on whether the4048

code is running on the host or on some accelerator. If the acc_on_device routine has a compile-4049

time constant argument, the call evaluates at compile time to a constant. dev_type must be one4050

of the defined accelerator types.4051

The behavior of the acc_on_device routine is:4052

• If dev_type is acc_device_host, then outside of a compute region or accelerator rou-4053

tine, or in a compute region or accelerator routine that is executed on the host CPU, a call to4054

this routine will evaluate to true; otherwise, it will evaluate to false.4055

• If dev_type is acc_device_not_host, the result is the negation of the result with4056

argument acc_device_host.4057

• If dev_type is an accelerator device type, then in a compute region or routine that is ex-4058

ecuted on a device of that type, a call to this routine will evaluate to true; otherwise, it will4059

evaluate to false.4060

• The result with argument acc_device_default is undefined.4061

3.2.16 acc malloc4062

Summary4063

The acc_malloc routine allocates space in the current device memory.4064

Format4065

C or C++:4066

d_void* acc_malloc(size_t bytes);4067

Fortran:4068

type(c_ptr) function acc_malloc(bytes)4069

integer(c_size_t), value :: bytes4070

Description4071

The acc_malloc routine may be used to allocate space in the current device memory. Pointers4072

assigned from this routine may be used in deviceptr clauses to tell the compiler that the pointer4073

target is resident on the device. In case of an allocation error or if bytes has the value zero,4074

acc_malloc returns a null pointer.4075

3.2.17 acc free4076

Summary4077

The acc_free routine frees memory on the current device.4078

Format4079

C or C++:4080

void acc_free(d_void* data_dev);4081

Fortran:4082

subroutine acc_free(data_dev)4083

type(c_ptr), value :: data_dev4084

113

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Description4085

The acc_free routine will free previously allocated space in the current device memory; data_dev4086

must be a pointer value that was returned by a call to acc_malloc or a null pointer. If data_dev4087

is a null pointer, no operation is performed.4088

3.2.18 acc copyin and acc create4089

Summary4090

The acc_copyin and acc_create routines test to see if the argument is in shared memory or4091

already present in device-accessible memory of the current device; if not, they allocate space in4092

device-accessible memory of the current device to correspond to the specified local memory, and4093

the acc_copyin routines copy the data to that device-accessible memory.4094

Format4095

C or C++:4096

d_void* acc_copyin(h_void* data_arg, size_t bytes);4097

d_void* acc_create(h_void* data_arg, size_t bytes);4098

4099

void acc_copyin_async(h_void* data_arg, size_t bytes,4100

int async_arg);4101

void acc_create_async(h_void* data_arg, size_t bytes,4102

int async_arg);4103

4104

Fortran:4105

subroutine acc_copyin(data_arg [, bytes])4106

subroutine acc_create(data_arg [, bytes])4107

4108

subroutine acc_copyin_async(data_arg [, bytes], async_arg)4109

subroutine acc_create_async(data_arg [, bytes], async_arg)4110

4111

type(*), dimension(..) :: data_arg4112

integer :: bytes4113

integer(acc_handle_kind) :: async_arg4114

Description4115

A call to an acc_copyin or acc_create routine is similar to an enter data directive with4116

a copyin or create clause, respectively, as described in Sections 2.7.8 and 2.7.10, except that4117

no attach pointer action is performed for a pointer reference. In C/C++, data_arg is a pointer4118

to the data, and bytes specifies the data size in bytes; the associated data section starts at the4119

address in data_arg and continues for bytes bytes. The synchronous routines return a pointer4120

to the allocated device memory, as with acc_malloc. In Fortran, two forms are supported. In4121

the first, data_arg is a variable or a contiguous array section; the associated data section starts at4122

the address of, and continues to the end of the variable or array section. In the second, data_arg4123

is a variable or array element and bytes is the length in bytes; the associated data section starts4124

at the address of the variable or array element and continues for bytes bytes. For the _async4125

versions of these routines, async_arg must be an async-argument as defined in Section 2.164126

Asynchronous Behavior.4127

The behavior of these routines for the associated data section is:4128

114

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

• If the data section is in shared memory and does not refers to a captured variable, no ac-4129

tion is taken. The C/C++ synchronous acc_copyin and acc_create routines return the4130

incoming pointer.4131

• If the data section is present in device-accessible memory of the current device, the routines4132

perform a increment counter action with the dynamic reference counter. The C/C++ syn-4133

chronous acc_copyin and acc_create routines return a pointer to the existing device-4134

accessible memory.4135

• Otherwise:4136

– The acc_copyin routines behave as follows:4137

1. An allocate memory action is performed.4138

2. A transfer in action is performed.4139

3. A increment counter action with the dynamic reference counter is performed.4140

– The acc_create routines behave as follows:4141

1. An allocate memory action is performed.4142

2. A increment counter action with the dynamic reference counter is performed.4143

The C/C++ synchronous acc_copyin and acc_create routines return a pointer to the4144

newly allocated device memory.4145

This data may be accessed using the present data clause. Pointers assigned from the C/C++4146

synchronous acc_copyin and acc_create routines may be used in deviceptr clauses to4147

tell the compiler that the pointer target is resident on the device.4148

The synchronous versions will not return until the memory has been allocated and any data transfers4149

are complete.4150

The _async versions of these routines will perform any data transfers asynchronously on the async4151

queue associated with async_arg. The routine may return before the data has been transferred;4152

see Section 2.16 Asynchronous Behavior for more details. The data will be treated as present in4153

device-accessible memory of the current device even if the data has not been allocated or transferred4154

before the routine returns.4155

For compatibility with OpenACC 2.0, acc_present_or_copyin and acc_pcopyin are al-4156

ternate names for acc_copyin, and acc_present_or_create and acc_pcreate are al-4157

ternate names for acc_create.4158

Errors4159

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and4160

bytes is nonzero.4161

• An acc_error_partly_present error is issued if part of the data section is already4162

present in device-accessible memory of the current device but all of the data section is not.4163

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4164

tion that is not contiguous (in Fortran).4165

• An acc_error_out_of_memory error is issued if the accelerator device does not have4166

enough memory for the data.4167

115

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4168

argument value.4169

See Section 5.2.2.4170

3.2.19 acc copyout and acc delete4171

Summary4172

The acc_copyout and acc_delete routines test to see if the argument is in shared memory4173

and does not refer to a captured variable; if not, the argument must be present in device-accessible4174

memory of the current device. The acc_copyout routines copy data from device-accessible4175

memory to the corresponding local memory, and both acc_copyout and acc_delete routines4176

deallocate that space from the device-accessible memory.4177

Format4178

C or C++:4179

void acc_copyout(h_void* data_arg, size_t bytes);4180

void acc_delete (h_void* data_arg, size_t bytes);4181

4182

void acc_copyout_finalize(h_void* data_arg, size_t bytes);4183

void acc_delete_finalize (h_void* data_arg, size_t bytes);4184

4185

void acc_copyout_async(h_void* data_arg, size_t bytes,4186

int async_arg);4187

void acc_delete_async (h_void* data_arg, size_t bytes,4188

int async_arg);4189

4190

void acc_copyout_finalize_async(h_void* data_arg, size_t bytes,4191

int async_arg);4192

void acc_delete_finalize_async (h_void* data_arg, size_t bytes,4193

int async_arg);4194

4195

Fortran:4196

subroutine acc_copyout(data_arg [, bytes])4197

subroutine acc_delete (data_arg [, bytes])4198

4199

subroutine acc_copyout_finalize(data_arg [, bytes])4200

subroutine acc_delete_finalize (data_arg [, bytes])4201

4202

subroutine acc_copyout_async(data_arg [, bytes], async_arg)4203

subroutine acc_delete_async (data_arg [, bytes], async_arg)4204

4205

subroutine acc_copyout_finalize_async(data_arg [, bytes], &4206

async_arg)4207

subroutine acc_delete_finalize_async (data_arg [, bytes], &4208

async_arg)4209

4210

type(*), dimension(..) :: data_arg4211

116

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

integer :: bytes4212

integer(acc_handle_kind) :: async_arg4213

Description4214

A call to an acc_copyout or acc_delete routine is similar to an exit data directive4215

with a copyout or delete clause, respectively, and a call to an acc_copyout_finalize4216

or acc_delete_finalize routine is similar to an exit data finalize directive with a4217

copyout or delete clause, respectively, as described in Section 2.7.9 and 2.7.12, except that no4218

detach pointer action is performed for a pointer reference. The arguments and the associated data4219

section are as for acc_copyin.4220

The behavior of these routines for the associated data section is:4221

• If the data section is in shared memory and does not refer to a captured variable, no action is4222

taken.4223

• If the dynamic reference counter for the data section is zero, no action is taken.4224

• Otherwise, the dynamic reference counter is updated:4225

– The acc_copyout and acc_delete) routines perform a decrement counter action4226

with the dynamic reference counter.4227

– The acc_copyout_finalize or acc_delete_finalize routines perform a4228

reset counter action with the dynamic reference counter.4229

If both reference counters are then zero:4230

– The acc_copyout routines perform a transfer out action followed by a deallocate memory4231

action.4232

– The acc_delete routines perform a deallocate memory action.4233

The synchronous versions will not return until the data has been completely transferred and the4234

memory has been deallocated.4235

The _async versions of these routines will perform any associated data transfers asynchronously4236

on the async queue associated with async_arg. The routine may return before the data has been4237

transferred or deallocated; see Section 2.16 Asynchronous Behavior for more details. Even if the4238

data has not been transferred or deallocated before the routine returns, the data will be treated as not4239

present in device-accessible memory of the current device if both reference counters are zero.4240

Errors4241

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and4242

bytes is nonzero.4243

• An acc_error_not_present error is issued if the data section is not in shared memory4244

and is not present in the current device memory.4245

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4246

tion that is not contiguous (in Fortran).4247

• An acc_error_partly_present error is issued if part of the data section is already4248

present in device-accessible memory of the current device but all of the data section is not.4249

117

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4250

argument value.4251

See Section 5.2.2.4252

3.2.20 acc update device and acc update self4253

Summary4254

The acc_update_device and acc_update_self routines test to see if the argument is in4255

shared memory and it is not a captured variable; if not, the argument must be present in the device-4256

accessible memory of the current device, and the routines update the data in device memory from4257

the corresponding local memory (acc_update_device) or update the data in local memory4258

from the corresponding device-accessible memory (acc_update_self).4259

Format4260

C or C++:4261

void acc_update_device(h_void* data_arg, size_t bytes);4262

void acc_update_self (h_void* data_arg, size_t bytes);4263

4264

void acc_update_device_async(h_void* data_arg, size_t bytes,4265

int async_arg);4266

void acc_update_self_async (h_void* data_arg, size_t bytes,4267

int async_arg);4268

4269

Fortran:4270

subroutine acc_update_device(data_arg [, bytes])4271

subroutine acc_update_self (data_arg [, bytes])4272

4273

subroutine acc_update_device_async(data_arg [, bytes], async_arg)4274

subroutine acc_update_self_async (data_arg [, bytes], async_arg)4275

4276

type(*), dimension(..) :: data_arg4277

integer :: bytes4278

integer(acc_handle_kind) :: async_arg4279

Description4280

A call to an acc_update_device routine is functionally equivalent to an update device4281

directive. A call to an acc_update_self routine is functionally equivalent to an update self4282

directive. See Section 2.14.4. The arguments and the data section are as for acc_copyin.4283

The behavior of these routines for the associated data section is:4284

• If the data section is in shared memory and does not refer to a captured variable or bytes is4285

zero, no action is taken.4286

• Otherwise:4287

– A call to an acc_update_device routine performs a transfer in action with the4288

corresponding memory.4289

118

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

– A call to an acc_update_self routine performs a transfer out action with the cor-4290

responding memory.4291

The _async versions of these routines will perform the data transfers asynchronously on the async4292

queue associated with async_arg. The routine may return before the data has been transferred;4293

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4294

until the data has been completely transferred.4295

Errors4296

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and4297

bytes is nonzero.4298

• An acc_error_not_present error is issued if the data section is not in shared memory4299

and is not present in the current device memory.4300

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4301

tion that is not contiguous (in Fortran).4302

• An acc_error_partly_present error is issued if part of the data section is already4303

present in device-accessible memory of the current device but all of the data section is not.4304

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4305

argument value.4306

See Section 5.2.2.4307

3.2.21 acc map data4308

Summary4309

The acc_map_data routine maps previously allocated space in the current device memory to the4310

specified host data.4311

Format4312

C or C++:

void acc_map_data(h_void* data_arg, d_void* data_dev,

size_t bytes);4313

Fortran:4314

subroutine acc_map_data(data_arg, data_dev, bytes)4315

type(*),dimension(*) :: data_arg4316

type(c_ptr), value :: data_dev4317

integer(c_size_t), value :: bytes4318

Description4319

A call to the acc_map_data routine is similar to a call to acc_create, except that instead of4320

allocating new device memory to start a data lifetime, the device address to use for the data lifetime4321

is specified as an argument. data_arg is a host address, data_dev is the corresponding device4322

address, and bytes is the length in bytes. data_dev may be the result of a call to acc_malloc,4323

or may come from some other device-specific API routine. The associated data section is as for4324

acc_copyin.4325

The behavior of the acc_map_data routine is:4326

119

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

• If the data section is in shared memory, the behavior is undefined.4327

• If any of the data referred to by data_dev is already mapped to any host memory address,4328

the behavior is undefined.4329

• Otherwise, after this call, when data_arg appears in a data clause, the data_dev address4330

will be used. The dynamic reference count for the data referred to by data_arg is set to4331

one, but no data movement will occur.4332

Memory mapped by acc_map_data may not have the associated dynamic reference count decre-4333

mented to zero, except by a call to acc_unmap_data. See Section 2.6.7 Reference Counters.4334

Errors4335

• An acc_invalid_null_pointer error is issued if either data_arg or data_dev is4336

a null pointer.4337

• An acc_invalid_argument error is issued if bytes is zero.4338

• An acc_error_present error is issued if any part of the data section is already present4339

in the current device memory.4340

See Section 5.2.2.4341

3.2.22 acc unmap data4342

Summary4343

The acc_unmap_data routine unmaps device data from the specified host data.4344

Format4345

C or C++:4346

void acc_unmap_data(h_void* data_arg);4347

Fortran:4348

subroutine acc_unmap_data(data_arg)4349

type(*),dimension(*) :: data_arg4350

Description4351

A call to the acc_unmap_data routine is similar to a call to acc_delete, except the device4352

memory is not deallocated. data_arg is a host address.4353

The behavior of the acc_unmap_data routine is:4354

• If data_argwas not previously mapped to some device address via a call to acc_map_data,4355

the behavior is undefined.4356

• Otherwise, the data lifetime for data_arg is ended. The dynamic reference count for4357

data_arg is set to zero, but no data movement will occur and the corresponding device4358

memory is not deallocated. See Section 2.6.7 Reference Counters.4359

Errors4360

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer.4361

• An acc_error_present error is issued if the structured reference count for the any part4362

of the data is not zero.4363

See Section 5.2.2.4364

120

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

3.2.23 acc deviceptr4365

Summary4366

The acc_deviceptr routine returns the device pointer associated with a specific host address.4367

Format4368

C or C++:4369

d_void* acc_deviceptr(h_void* data_arg);4370

Fortran:4371

type(c_ptr) function acc_deviceptr(data_arg)4372

type(*),dimension(*) :: data_arg4373

Description4374

The acc_deviceptr routine returns the device pointer associated with a host address. data_arg4375

is the address of a host variable or array that may have an active lifetime on the current device.4376

The behavior of the acc_deviceptr routine for the data referred to by data_arg is:4377

• If the data is in shared memory or data_arg is a null pointer, acc_deviceptr returns4378

the incoming address.4379

• If the data is not present in the current device memory, acc_deviceptr returns a null4380

pointer.4381

• Otherwise, acc_deviceptr returns the address in the current device memory that corre-4382

sponds to the address data_arg.4383

3.2.24 acc hostptr4384

Summary4385

The acc_hostptr routine returns the host pointer associated with a specific device address.4386

Format4387

C or C++:4388

h_void* acc_hostptr(d_void* data_dev);4389

Fortran:4390

type(c_ptr) function acc_hostptr(data_dev)4391

type(c_ptr), value :: data_dev4392

Description4393

The acc_hostptr routine returns the host pointer associated with a device address. data_dev4394

is the address of a device variable or array, such as that returned from acc_deviceptr, acc_create4395

or acc_copyin.4396

The behavior of the acc_hostptr routine for the data referred to by data_dev is:4397

• If the data is in shared memory or data_dev is a null pointer, acc_hostptr returns the4398

incoming address.4399

• If the data corresponds to a host address which is present in the current device memory,4400

acc_hostptr returns the host address.4401

• Otherwise, acc_hostptr returns a null pointer.4402

121

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

3.2.25 acc is present4403

Summary4404

The acc_is_present routine tests whether a variable or array region is accessible from the4405

current device.4406

Format4407

C or C++:4408

int acc_is_present(h_void* data_arg, size_t bytes);4409

Fortran:4410

logical function acc_is_present(data_arg)4411

logical function acc_is_present(data_arg, bytes)4412

type(*), dimension(..) :: data_arg4413

integer :: bytes4414

Description4415

The acc_is_present routine tests whether the specified host data is accessible from the current4416

device. In C/C++, data_arg is a pointer to the data, and bytes specifies the data size in bytes. In4417

Fortran, two forms are supported. In the first, data_arg is a variable or contiguous array section.4418

In the second, data_arg is a variable or array element and bytes is the length in bytes. A4419

bytes value of zero is treated as a value of one if data_arg is not a null pointer.4420

The behavior of the acc_is_present routines for the data referred to by data_arg is:4421

• If the data is in shared memory, a call to acc_is_present will evaluate to true.4422

• If the data is present in the current device memory, a call to acc_is_present will evaluate4423

to true.4424

• Otherwise, a call to acc_is_present will evaluate to false.4425

Errors4426

• An acc_error_invalid_argument error is issued if bytes is negative (in Fortran).4427

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-4428

tion that is not contiguous (in Fortran).4429

See Section 5.2.2.4430

3.2.26 acc memcpy to device4431

Summary4432

The acc_memcpy_to_device routine copies data from local memory to device memory.4433

Format4434

C or C++:

void acc_memcpy_to_device(d_void* data_dev_dest,

h_void* data_host_src, size_t bytes);

void acc_memcpy_to_device_async(d_void* data_dev_dest,

h_void* data_host_src, size_t bytes,

int async_arg);4435

122

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Fortran:

subroutine acc_memcpy_to_device(data_dev_dest,

data_host_src, bytes)

subroutine acc_memcpy_to_device_async(data_dev_dest,

data_host_src, bytes, async_arg)4436

type(c_ptr), value :: data_dev_dest4437

type(*),dimension(*) :: data_host_src4438

integer(c_size_t), value :: bytes4439

integer(acc_handle_kind), value :: async_arg4440

Description4441

The acc_memcpy_to_device routine copies bytes bytes of data from the local address in4442

data_host_src to the device address in data_dev_dest. data_dev_dest must be an4443

address accessible from the current device, such as an address returned from acc_malloc or4444

acc_deviceptr, or an address in shared memory.4445

The behavior of the acc_memcpy_to_device routines is:4446

• If bytes is zero, no action is taken.4447

• If data_dev_dest and data_host_src both refer to shared memory and have the same4448

value, no action is taken.4449

• If data_dev_dest and data_host_src both refer to shared memory and the memory4450

regions overlap, the behavior is undefined.4451

• If the data referred to by data_dev_dest is not accessible by the current device, the be-4452

havior is undefined.4453

• If the data referred to by data_host_src is not accessible by the local thread, the behavior4454

is undefined.4455

• Otherwise, bytes bytes of data at data_host_src in local memory are copied to4456

data_dev_dest in the current device memory.4457

The _async version of this routine will perform the data transfers asynchronously on the async4458

queue associated with async_arg. The routine may return before the data has been transferred;4459

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4460

until the data has been completely transferred.4461

Errors4462

• An acc_error_invalid_null_pointer error is issued if data_dev_dest or4463

data_host_src is a null pointer and bytes is nonzero.4464

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4465

argument value.4466

See Section 5.2.2.4467

3.2.27 acc memcpy from device4468

Summary4469

The acc_memcpy_from_device routine copies data from device memory to local memory.4470

123

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Format4471

C or C++:

void acc_memcpy_from_device(h_void* data_host_dest,

d_void* data_dev_src, size_t bytes);

void acc_memcpy_from_device_async(h_void* data_host_dest,

d_void* data_dev_src, size_t bytes,4472

int async_arg);4473

Fortran:

subroutine acc_memcpy_from_device(data_host_dest,

data_dev_src, bytes)

subroutine acc_memcpy_from_device_async(data_host_dest,

data_dev_src, bytes, async_arg)4474

type(*),dimension(*) :: data_host_dest4475

type(c_ptr), value :: data_dev_src4476

integer(c_size_t), value :: bytes4477

integer(acc_handle_kind), value :: async_arg4478

Description4479

The acc_memcpy_from_device routine copies bytes bytes of data from the device address4480

in data_dev_src to the local address in data_host_dest. data_dev_src must be an4481

address accessible from the current device, such as an address returned from acc_malloc or4482

acc_deviceptr, or an address in shared memory.4483

The behavior of the acc_memcpy_from_device routines is:4484

• If bytes is zero, no action is taken.4485

• If data_host_dest and data_dev_src both refer to shared memory and have the same4486

value, no action is taken.4487

• If data_host_dest and data_dev_src both refer to shared memory and the memory4488

regions overlap, the behavior is undefined.4489

• If the data referred to by data_dev_src is not accessible by the current device, the behav-4490

ior is undefined.4491

• If the data referred to by data_host_dest is not accessible by the local thread, the behav-4492

ior is undefined.4493

• Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied4494

to data_host_dest in local memory.4495

The _async version of this routine will perform the data transfers asynchronously on the async4496

queue associated with async_arg. The routine may return before the data has been transferred;4497

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4498

until the data has been completely transferred.4499

Errors4500

• An acc_error_invalid_null_pointer error is issued if data_host_dest or4501

data_dev_src is a null pointer and bytes is nonzero.4502

124

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4503

argument value.4504

See Section 5.2.2.4505

3.2.28 acc memcpy device4506

Summary4507

The acc_memcpy_device routine copies data from one memory location to another memory4508

location on the current device.4509

Format4510

C or C++:

void acc_memcpy_device(d_void* data_dev_dest,

d_void* data_dev_src, size_t bytes);

void acc_memcpy_device_async(d_void* data_dev_dest,

d_void* data_dev_src, size_t bytes,4511

int async_arg);4512

Fortran:

subroutine acc_memcpy_device(data_dev_dest,

data_dev_src, bytes);

subroutine acc_memcpy_device_async(data_dev_dest,

data_dev_src, bytes,

async_arg);4513

type(c_ptr), value :: data_dev_dest4514

type(c_ptr), value :: data_dev_src4515

integer(c_size_t), value :: bytes4516

integer(acc_handle_kind), value :: async_arg4517

Description4518

The acc_memcpy_device routine copies bytes bytes of data from the device address in4519

data_dev_src to the device address in data_dev_dest. Both addresses must be addresses in4520

the current device memory, such as would be returned from acc_malloc or acc_deviceptr.4521

The behavior of the acc_memcpy_device routines is:4522

• If bytes is zero, no action is taken.4523

• If data_dev_dest and data_dev_src have the same value, no action is taken.4524

• If the memory regions referred to by data_dev_dest and data_dev_src overlap, the4525

behavior is undefined.4526

• If the data referred to by data_dev_src or data_dev_dest is not accessible by the4527

current device, the behavior is undefined.4528

• Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied4529

to data_dev_dest in the current device memory.4530

The _async version of this routine will perform the data transfers asynchronously on the async4531

queue associated with async_arg. The routine may return before the data has been transferred;4532

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return4533

until the data has been completely transferred.4534

125

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

Errors4535

• An acc_error_invalid_null_pointer error is issued if data_dev_dest or4536

data_dev_src is a null pointer and bytes is nonzero.4537

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4538

argument value.4539

See Section 5.2.2.4540

3.2.29 acc attach and acc detach4541

Summary4542

The acc_attach routines update a pointer in device-accessible memory to point to the corre-4543

sponding copy of the host pointer target. The acc_detach routines restore a pointer in device-4544

accessible memory to point to the host pointer target.4545

Format4546

C or C++:4547

void acc_attach(h_void** ptr_addr);4548

void acc_attach_async(h_void** ptr_addr, int async_arg);4549

4550

void acc_detach(h_void** ptr_addr);4551

void acc_detach_async(h_void** ptr_addr, int async_arg);4552

void acc_detach_finalize(h_void** ptr_addr);4553

void acc_detach_finalize_async(h_void** ptr_addr,4554

int async_arg);4555

Fortran:4556

subroutine acc_attach(ptr_addr)4557

subroutine acc_attach_async(ptr_addr, async_arg)4558

type(*),dimension(..) :: ptr_addr4559

integer(acc_handle_kind),value :: async_arg4560

4561

subroutine acc_detach(ptr_addr)4562

subroutine acc_detach_async(ptr_addr, async_arg)4563

subroutine acc_detach_finalize(ptr_addr)4564

subroutine acc_detach_finalize_async(ptr_addr,4565

async_arg)4566

type(*),dimension(..) :: ptr_addr4567

integer(acc_handle_kind),value :: async_arg4568

Description4569

A call to an acc_attach routine is functionally equivalent to an enter data attach direc-4570

tive, as described in Section 2.7.13. A call to an acc_detach routine is functionally equivalent to4571

an exit data detach directive, and a call to an acc_detach_finalize routine is function-4572

ally equivalent to an exit data finalize detach directive, as described in Section 2.7.14.4573

ptr_addr must be the address of a host pointer. async_arg must be an async-argument as4574

defined in Section 2.16.4575

The behavior of these routines is:4576

126

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

• If ptr_addr refers to shared memory and does not refer to a captured variable, no action is4577

taken.4578

• If the pointer referred to by ptr_addr is not present in device-accessible memory of the4579

current device, no action is taken.4580

• Otherwise:4581

– The acc_attach routines behave as follows,4582

1. an increment counter action is performed on the associated attachment counter,4583

2. if the associated attachment counter is now one, an attach pointer action is per-4584

formed on the pointer referred to by ptr_addr; see Section 2.7.2.4585

– The acc_detach routines behave as follows4586

1. an decrement counter action is performed on the associated attachment counter,4587

2. if the associated attachment counter is now zero, an detach pointer action is per-4588

formed on the pointer referred to by ptr_addr; see Section 2.7.2.4589

See Section 2.7.2.4590

– The acc_detach_finalize routines behave as follows, perform a detach pointer4591

action on the pointer referred to by ptr_addr followed by a reset counter action on4592

the associated attachment counter; see Section 2.7.2.4593

These routines may issue a data transfer from local memory to device-accessible memory. The4594

_async versions of these routines will perform the data transfers asynchronously on the async4595

queue associated with async_arg. These routines may return before the data has been transferred;4596

see Section 2.16 for more details. The synchronous versions will not return until the data has been4597

completely transferred.4598

Errors4599

• An acc_error_invalid_null_pointer error is issued if ptr_addr is a null pointer.4600

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4601

argument value.4602

See Section 5.2.2.4603

3.2.30 acc memcpy d2d4604

Summary4605

The acc_memcpy_d2d routines copy the contents of an array on one device to an array on the4606

same or a different device without updating the value on the host.4607

Format4608

C or C++:

void acc_memcpy_d2d(h_void* data_arg_dest,

h_void* data_arg_src, size_t bytes,

int dev_num_dest, int dev_num_src);

void acc_memcpy_d2d_async(h_void* data_arg_dest,

127

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

h_void* data_arg_src, size_t bytes,

int dev_num_dest, int dev_num_src,

int async_arg_src);4609

4610

Fortran:

subroutine acc_memcpy_d2d(data_arg_dest, data_arg_src,&

bytes, dev_num_dest, dev_num_src)

subroutine acc_memcpy_d2d_async(data_arg_dest, data_arg_src,&

bytes, dev_num_dest, dev_num_src,&

async_arg_src)4611

type(*), dimension(..) :: data_arg_dest4612

type(*), dimension(..) :: data_arg_src4613

integer :: bytes4614

integer :: dev_num_dest4615

integer :: dev_num_src4616

integer :: async_arg_src4617

4618

Description4619

The acc_memcpy_d2d routines are passed the address of destination and source host data as well4620

as integer device numbers for the destination and source devices, which must both be of the current4621

device type.4622

The behavior of the acc_memcpy_d2d routines is:4623

• If bytes is zero, no action is taken.4624

• If both pointers have the same value and either the two device numbers are the same or the4625

addresses are in shared memory, then no action is taken.4626

• Otherwise, bytes bytes of data at the device address corresponding to data_arg_src on4627

device dev_num_src are copied to the device address corresponding to data_arg_dest4628

on device dev_num_dest.4629

For acc_memcpy_d2d_async the value of async_arg_src is the number of an async queue4630

on the source device. This routine will perform the data transfers asynchronously on the async queue4631

associated with async_arg_src for device dev_num_src; see Section 2.16 Asynchronous Behavior4632

for more details.4633

Errors4634

• An acc_error_device_unavailable error is issued if dev_num_dest or dev_num_src4635

is not a valid device number.4636

• An acc_error_invalid_null_pointer error is issued if either data_arg_dest4637

or data_arg_src is a null pointer and bytes is nonzero.4638

• An acc_error_not_present error is issued if the data at either address is not in shared4639

memory and is not present in the respective device memory.4640

• An acc_error_partly_present error is issued if part of the data is already present in4641

the current device memory but all of the data is not.4642

128

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4643

argument value.4644

See Section 5.2.2.4645

129

The OpenACC® API Version Technical Report 24-1 3.2. Runtime Library Routines

130

The OpenACC® API Version Technical Report 24-1 4.1. ACC DEVICE TYPE

4. Environment Variables4646

This chapter describes the environment variables that modify the behavior of accelerator regions.4647

The names of the environment variables must be upper case. The values assigned environment4648

variables are case-insensitive and may have leading and trailing whitespace. If the values of the4649

environment variables change after the program has started, even if the program itself modifies the4650

values, the behavior is implementation-defined.4651

4.1 ACC DEVICE TYPE4652

The ACC_DEVICE_TYPE environment variable controls the default device type to use when ex-4653

ecuting parallel, serial, and kernels regions, if the program has been compiled to use more than4654

one different type of device. The allowed values of this environment variable are implementation-4655

defined. See the release notes for currently-supported values of this environment variable.4656

Example:4657

setenv ACC_DEVICE_TYPE NVIDIA4658

export ACC_DEVICE_TYPE=NVIDIA4659

4.2 ACC DEVICE NUM4660

The ACC_DEVICE_NUM environment variable controls the default device number to use when4661

executing accelerator regions. The value of this environment variable must be a nonnegative integer4662

between zero and the number of devices of the desired type attached to the host. If the value is4663

greater than or equal to the number of devices attached, the behavior is implementation-defined.4664

Example:4665

setenv ACC_DEVICE_NUM 14666

export ACC_DEVICE_NUM=14667

4.3 ACC PROFLIB4668

The ACC_PROFLIB environment variable specifies the profiling library. More details about the4669

evaluation at runtime is given in section 5.3.3 Runtime Dynamic Library Loading.4670

Example:4671

setenv ACC_PROFLIB /path/to/proflib/libaccprof.so4672

export ACC_PROFLIB=/path/to/proflib/libaccprof.so4673

131

The OpenACC® API Version Technical Report 24-1 4.3. ACC PROFLIB

132

The OpenACC® API Version Technical Report 24-1 5.1. Events

5. Profiling and Error Callback Interface4674

This chapter describes the OpenACC interface for runtime callback routines. These routines may be4675

provided by the programmer or by a tool or library developer. Calls to these routines are triggered4676

during the application execution at specific OpenACC events. There are two classes of events,4677

profiling events and error events. Profiling events can be used by tools for profile or trace data4678

collection. Currently, this interface does not support tools that employ asynchronous sampling.4679

Error events can be used to release resources or cleanly shut down a large parallel application when4680

the OpenACC runtime detects an error condition from which it cannot recover. This is specifically4681

for error handling, not for error recovery. There is no support provided for restarting or retrying4682

an OpenACC program, construct, or API routine after an error condition has been detected and an4683

error callback routine has been called.4684

In this chapter, the term runtime refers to the OpenACC runtime library. The term library refers to4685

the routines invoked at specified events by the OpenACC runtime.4686

There are three steps for interfacing a library to the runtime. The first step is to write the library4687

callback routines. Section 5.1 Events describes the supported runtime events and the order in which4688

callbacks to the callback routines will occur. Section 5.2 Callbacks Signature describes the signature4689

of the callback routines for all events.4690

The second step is to load the library at runtime. The library may be statically linked to the appli-4691

cation or dynamically loaded by the application, a library, or a tool. This is described in Section 5.34692

Loading the Library.4693

The third step is to register the desired callbacks with the events. This may be done explicitly by the4694

application, if the library is statically linked with the application, implicitly by including a call to a4695

registration routine in a .init section, or by including an initialization routine in the library if it is4696

dynamically loaded by the runtime. This is described in Section 5.4 Registering Event Callbacks.4697

5.1 Events4698

This section describes the events that are recognized by the runtime. Most profiling events have a4699

start and end callback routine, that is, a routine that is called just before the runtime code to handle4700

the event starts and another routine that is called just after the event is handled. The event names4701

and routine prototypes are available in the header file acc_callback.h, which is delivered with4702

the OpenACC implementation. For backward compatibility with previous versions of OpenACC,4703

the implementation also delivers the same information in acc_prof.h. Event names are prefixed4704

with acc_ev_.4705

The ordering of events must reflect the order in which the OpenACC runtime actually executes them,4706

i.e. if a runtime moves the enqueuing of data transfers or kernel launches outside the originating4707

clauses/constructs, it needs to issue the corresponding launch callbacks when they really occur. A4708

callback for a start event must always precede the matching end callback. No callbacks will be4709

issued after a runtime shutdown event.4710

The events that the runtime supports can be registered with a callback and are defined in the enu-4711

meration type acc_event_t.4712

133

The OpenACC® API Version Technical Report 24-1 5.1. Events

typedef enum acc_event_t{4713

acc_ev_none = 0,4714

acc_ev_device_init_start = 1,4715

acc_ev_device_init_end = 2,4716

acc_ev_device_shutdown_start = 3,4717

acc_ev_device_shutdown_end = 4,4718

acc_ev_runtime_shutdown = 5,4719

acc_ev_create = 6,4720

acc_ev_delete = 7,4721

acc_ev_alloc = 8,4722

acc_ev_free = 9,4723

acc_ev_enter_data_start = 10,4724

acc_ev_enter_data_end = 11,4725

acc_ev_exit_data_start = 12,4726

acc_ev_exit_data_end = 13,4727

acc_ev_update_start = 14,4728

acc_ev_update_end = 15,4729

acc_ev_compute_construct_start = 16,4730

acc_ev_compute_construct_end = 17,4731

acc_ev_enqueue_launch_start = 18,4732

acc_ev_enqueue_launch_end = 19,4733

acc_ev_enqueue_upload_start = 20,4734

acc_ev_enqueue_upload_end = 21,4735

acc_ev_enqueue_download_start = 22,4736

acc_ev_enqueue_download_end = 23,4737

acc_ev_wait_start = 24,4738

acc_ev_wait_end = 25,4739

acc_ev_error = 100,4740

acc_ev_last = 1014741

}acc_event_t;4742

The value of acc_ev_last will change if new events are added to the enumeration, so a library4743

must not depend on that value.4744

5.1.1 Runtime Initialization and Shutdown4745

No callbacks can be registered for the runtime initialization. Instead the initialization of the tool is4746

handled as described in Section 5.3 Loading the Library.4747

The runtime shutdown profiling event name is4748

acc_ev_runtime_shutdown4749

This event is triggered before the OpenACC runtime shuts down, either because all devices have4750

been shutdown by calls to the acc_shutdown API routine, or at the end of the program.4751

5.1.2 Device Initialization and Shutdown4752

The device initialization profiling event names are4753

134

The OpenACC® API Version Technical Report 24-1 5.1. Events

acc_ev_device_init_start4754

acc_ev_device_init_end4755

These events are triggered when a device is being initialized by the OpenACC runtime. This may be4756

when the program starts, or may be later during execution when the program reaches an acc_init4757

call or an OpenACC construct. The acc_ev_device_init_start is triggered before device4758

initialization starts and acc_ev_device_init_end after initialization is complete.4759

The device shutdown profiling event names are4760

acc_ev_device_shutdown_start4761

acc_ev_device_shutdown_end4762

These events are triggered when a device is shut down, most likely by a call to the OpenACC4763

acc_shutdown API routine. The acc_ev_device_shutdown_start is triggered before4764

the device shutdown process starts and acc_ev_device_shutdown_end after the device shut-4765

down is complete.4766

5.1.3 Enter Data and Exit Data4767

The enter data profiling event names are4768

acc_ev_enter_data_start4769

acc_ev_enter_data_end4770

These events are triggered at enter data directives, entry to data constructs, and entry to implicit4771

data regions such as those generated by compute constructs. The acc_ev_enter_data_start4772

event is triggered before any data allocation, data update, or wait events that are associated with4773

that directive or region entry, and the acc_ev_enter_data_end is triggered after those events.4774

The exit data profiling event names are4775

acc_ev_exit_data_start4776

acc_ev_exit_data_end4777

These events are triggered at exit data directives, exit from data constructs, and exit from4778

implicit data regions. The acc_ev_exit_data_start event is triggered before any data4779

deallocation, data update, or wait events associated with that directive or region exit, and the4780

acc_ev_exit_data_end event is triggered after those events.4781

When the construct that triggers an enter data or exit data event was generated implicitly by the4782

compiler the implicit field in the event structure will be set to 1. When the construct that4783

triggers these events was specified explicitly by the application code the implicit field in the4784

event structure will be set to 0.4785

5.1.4 Data Allocation4786

The data allocation profiling event names are4787

acc_ev_create4788

acc_ev_delete4789

acc_ev_alloc4790

acc_ev_free4791

135

The OpenACC® API Version Technical Report 24-1 5.1. Events

An acc_ev_alloc event is triggered when the OpenACC runtime allocates memory from the de-4792

vice memory pool, and an acc_ev_free event is triggered when the runtime frees that memory.4793

An acc_ev_create event is triggered when the OpenACC runtime associates device memory4794

with local memory, such as for a data clause (create, copyin, copy, copyout) at entry to4795

a data construct, compute construct, at an enter data directive, or in a call to a data API rou-4796

tine (acc_copyin, acc_create, . . .). An acc_ev_create event may be preceded by an4797

acc_ev_alloc event, if newly allocated memory is used for this device data, or it may not, if4798

the runtime manages its own memory pool. An acc_ev_delete event is triggered when the4799

OpenACC runtime disassociates device memory from local memory, such as for a data clause at4800

exit from a data construct, compute construct, at an exit data directive, or in a call to a data API4801

routine (acc_copyout, acc_delete, . . .). An acc_ev_delete event may be followed by4802

an acc_ev_free event, if the disassociated device memory is freed, or it may not, if the runtime4803

manages its own memory pool.4804

When the action that generates a data allocation event was generated explicitly by the application4805

code the implicit field in the event structure will be set to 0. When the data allocation event4806

is triggered because of a variable or array with implicitly-determined data attributes or otherwise4807

implicitly by the compiler the implicit field in the event structure will be set to 1.4808

5.1.5 Data Construct4809

The profiling events for entering and leaving data constructs are mapped to enter data and exit data4810

events as described in Section 5.1.3 Enter Data and Exit Data.4811

5.1.6 Update Directive4812

The update directive profiling event names are4813

acc_ev_update_start4814

acc_ev_update_end4815

The acc_ev_update_start event will be triggered at an update directive, before any data4816

update or wait events that are associated with the update directive are carried out, and the corre-4817

sponding acc_ev_update_end event will be triggered after any of the associated events.4818

5.1.7 Compute Construct4819

The compute construct profiling event names are4820

acc_ev_compute_construct_start4821

acc_ev_compute_construct_end4822

The acc_ev_compute_construct_start event is triggered at entry to a compute construct,4823

before any launch events that are associated with entry to the compute construct. The4824

acc_ev_compute_construct_end event is triggered at the exit of the compute construct,4825

after any launch events associated with exit from the compute construct. If there are data clauses4826

on the compute construct, those data clauses may be treated as part of the compute construct, or as4827

part of a data construct containing the compute construct. The callbacks for data clauses must use4828

the same line numbers as for the compute construct events.4829

136

The OpenACC® API Version Technical Report 24-1 5.1. Events

5.1.8 Enqueue Kernel Launch4830

The launch profiling event names are4831

acc_ev_enqueue_launch_start4832

acc_ev_enqueue_launch_end4833

The acc_ev_enqueue_launch_start event is triggered just before an accelerator compu-4834

tation is enqueued for execution on a device, and acc_ev_enqueue_launch_end is trig-4835

gered just after the computation is enqueued. Note that these events are synchronous with the4836

local thread enqueueing the computation to a device, not with the device executing the compu-4837

tation. The acc_ev_enqueue_launch_start event callback routine is invoked just before4838

the computation is enqueued, not just before the computation starts execution. More importantly,4839

the acc_ev_enqueue_launch_end event callback routine is invoked after the computation is4840

enqueued, not after the computation finished executing.4841

Note: Measuring the time between the start and end launch callbacks is often unlikely to be useful,4842

since it will only measure the time to manage the launch queue, not the time to execute the code on4843

the device.4844

5.1.9 Enqueue Data Update (Upload and Download)4845

The data update profiling event names are4846

acc_ev_enqueue_upload_start4847

acc_ev_enqueue_upload_end4848

acc_ev_enqueue_download_start4849

acc_ev_enqueue_download_end4850

The _start events are triggered just before each upload (data copy from local memory to device4851

memory) operation is or download (data copy from device memory to local memory) operation is4852

enqueued for execution on a device. The corresponding _end events are triggered just after each4853

upload or download operation is enqueued.4854

Note: Measuring the time between the start and end update callbacks is often unlikely to be useful,4855

since it will only measure the time to manage the enqueue operation, not the time to perform the4856

actual upload or download.4857

When the action that generates a data update event was generated explicitly by the application4858

code the implicit field in the event structure will be set to 0. When the data allocation event4859

is triggered because of a variable or array with implicitly-determined data attributes or otherwise4860

implicitly by the compiler the implicit field in the event structure will be set to 1.4861

5.1.10 Wait4862

The wait profiling event names are4863

acc_ev_wait_start4864

acc_ev_wait_end4865

4866

An acc_ev_wait_start event will be triggered for each relevant queue before the local thread4867

waits for that queue to be empty. A acc_ev_wait_end event will be triggered for each relevant4868

137

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

queue after the local thread has determined that the queue is empty.4869

Wait events occur when the local thread and a device synchronize, either due to a wait directive4870

or by a wait clause on a synchronous data construct, compute construct, or enter data, exit4871

data, or update directive. For wait events triggered by an explicit synchronous wait directive4872

or wait clause, the implicit field in the event structure will be 0. For all other wait events, the4873

implicit field in the event structure will be 1.4874

The OpenACC runtime need not trigger wait events for queues that have not been used in the4875

program, and need not trigger wait events for queues that have not been used by this thread since4876

the last wait operation. For instance, an acc wait directive with no arguments is defined to wait on4877

all queues. If the program only uses the default (synchronous) queue and the queue associated with4878

async(1) and async(2) then an acc wait directive may trigger wait events only for those4879

three queues. If the implementation knows that no activities have been enqueued on the async(2)4880

queue since the last wait operation, then the acc wait directive may trigger wait events only for4881

the default queue and the async(1) queue.4882

5.1.11 Error Event4883

The only error event is4884

acc_ev_error4885

An acc_ev_error event is triggered when the OpenACC program detects a runtime error con-4886

dition. The default runtime error callback routine may print an error message and halt program4887

execution. An application can register additional error event callback routines, to allow a failing4888

application to release resources or to cleanly shut down a large parallel runtime with many threads4889

and processes, for instance.4890

The application can register multiple alternate error callbacks. As described in Section4891

5.4.1 Multiple Callbacks, the callbacks will be invoked in the order in which they are registered.4892

If all the error callbacks return, the default error callback will be invoked. The error callback4893

routine must not execute any OpenACC compute or data constructs. The only OpenACC API4894

routines that can be safely invoked from an error callback routine are acc_get_property,4895

acc_get_property_string, and acc_shutdown.4896

5.2 Callbacks Signature4897

This section describes the signature of event callbacks. All event callbacks have the same signature.4898

The routine prototypes are available in the header file acc_callback.h, which is delivered with4899

the OpenACC implementation.4900

All callback routines have three arguments. The first argument is a pointer to a struct containing4901

general information; the same struct type is used for all callback events. The second argument is4902

a pointer to a struct containing information specific to that callback event; there is one struct type4903

containing information for data events, another struct type containing information for kernel launch4904

events, and a third struct type for other events, containing essentially no information. The third4905

argument is a pointer to a struct containing information about the application programming interface4906

(API) being used for the specific device. For NVIDIA CUDA devices, this contains CUDA-specific4907

information; for OpenCL devices, this contains OpenCL-specific information. Other interfaces can4908

be supported as they are added by implementations. The prototype for a callback routine is:4909

138

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

typedef void (*acc_callback)4910

(acc_callback_info*, acc_event_info*, acc_api_info*);4911

typedef acc_callback acc_prof_callback;4912

In the descriptions, the datatype ssize_t means a signed 32-bit integer for a 32-bit binary and4913

a 64-bit integer for a 64-bit binary, the datatype size_t means an unsigned 32-bit integer for a4914

32-bit binary and a 64-bit integer for a 64-bit binary, and the datatype int means a 32-bit integer4915

for both 32-bit and 64-bit binaries.4916

5.2.1 First Argument: General Information4917

The first argument is a pointer to the acc_callback_info struct type:4918

typedef struct acc_prof_info{4919

acc_event_t event_type;4920

int valid_bytes;4921

int version;4922

acc_device_t device_type;4923

int device_number;4924

int thread_id;4925

ssize_t async;4926

ssize_t async_queue;4927

const char* src_file;4928

const char* func_name;4929

int line_no, end_line_no;4930

int func_line_no, func_end_line_no;4931

}acc_callback_info;4932

typedef struct acc_prof_info acc_prof_info;4933

The name acc_prof_info is preserved for backward compatibility with previous versions of4934

OpenACC. The fields are described below.4935

• acc_event_t event_type - The event type that triggered this callback. The datatype4936

is the enumeration type acc_event_t, described in the previous section. This allows the4937

same callback routine to be used for different events.4938

• int valid_bytes - The number of valid bytes in this struct. This allows a library to inter-4939

face with newer runtimes that may add new fields to the struct at the end while retaining com-4940

patibility with older runtimes. A runtime must fill in the event_type and valid_bytes4941

fields, and must fill in values for all fields with offset less than valid_bytes. The value of4942

valid_bytes for a struct is recursively defined as:4943

valid_bytes(struct) = offset(lastfield) + valid_bytes(lastfield)4944

valid_bytes(type[n]) = (n-1)*sizeof(type) + valid_bytes(type)4945

valid_bytes(basictype) = sizeof(basictype)4946

• int version - A version number; the value of _OPENACC.4947

• acc_device_t device_type - The device type corresponding to this event. The datatype4948

is acc_device_t, an enumeration type of all the supported device types, defined in openacc.h.4949

• int device_number - The device number. Each device is numbered, typically starting at4950

139

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

device zero. For applications that use more than one device type, the device numbers may be4951

unique across all devices or may be unique only across all devices of the same device type.4952

• int thread_id - The host thread ID making the callback. Host threads are given unique4953

thread ID numbers typically starting at zero. This is not necessarily the same as the OpenMP4954

thread number.4955

• ssize_t async - The async-value used for operations associated with this event; see Sec-4956

tion 2.16 Asynchronous Behavior.4957

• ssize_t async_queue - The actual activity queue onto which the async field gets4958

mapped; see Section 2.16 Asynchronous Behavior.4959

• const char* src_file - A pointer to null-terminated string containing the name of or4960

path to the source file, if known, or a null pointer if not. If the library wants to save the source4961

file name, it must allocate memory and copy the string.4962

• const char* func_name - A pointer to a null-terminated string containing the name of4963

the function in which the event occurred, if known, or a null pointer if not. If the library wants4964

to save the function name, it must allocate memory and copy the string.4965

• int line_no - The line number of the directive or program construct or the starting line4966

number of the OpenACC construct corresponding to the event. A negative or zero value4967

means the line number is not known.4968

• int end_line_no - For an OpenACC construct, this contains the line number of the end4969

of the construct. A negative or zero value means the line number is not known.4970

• int func_line_no - The line number of the first line of the function named in func_name.4971

A negative or zero value means the line number is not known.4972

• int func_end_line_no - The last line number of the function named in func_name.4973

A negative or zero value means the line number is not known.4974

5.2.2 Second Argument: Event-Specific Information4975

The second argument is a pointer to the acc_event_info union type.4976

typedef union acc_event_info{4977

acc_event_t event_type;4978

acc_data_event_info data_event;4979

acc_launch_event_info launch_event;4980

acc_other_event_info other_event;4981

}acc_event_info;4982

The event_type field selects which union member to use. The first five members of each union4983

member are identical. The second through fifth members of each union member (valid_bytes,4984

parent_construct, implicit, and tool_info) have the same semantics for all event4985

types:4986

• int valid_bytes - The number of valid bytes in the respective struct. (This field is similar4987

used as discussed in Section 5.2.1 First Argument: General Information.)4988

140

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

• acc_construct_t parent_construct - This field describes the type of construct4989

that caused the event to be emitted. The possible values for this field are defined by the4990

acc_construct_t enum, described at the end of this section.4991

• int implicit - This field is set to 1 for any implicit event, such as an implicit wait at4992

a synchronous data construct or synchronous enter data, exit data or update directive. This4993

field is set to zero when the event is triggered by an explicit directive or call to a runtime API4994

routine.4995

• void* tool_info - This field is used to pass tool-specific information from a _start4996

event to the matching _end event. For a _start event callback, this field will be initialized4997

to a null pointer. The value of this field for a _end event will be the value returned by the4998

library in this field from the matching _start event callback, if there was one, or a null4999

pointer otherwise. For events that are neither _start or _end events, this field will be a5000

null pointer.5001

Data Events5002

For a data event, as noted in the event descriptions, the second argument will be a pointer to the5003

acc_data_event_info struct.5004

typedef struct acc_data_event_info{5005

acc_event_t event_type;5006

int valid_bytes;5007

acc_construct_t parent_construct;5008

int implicit;5009

void* tool_info;5010

const char* var_name;5011

size_t bytes;5012

const void* host_ptr;5013

const void* device_ptr;5014

}acc_data_event_info;5015

The fields specific for a data event are:5016

• acc_event_t event_type - The event type that triggered this callback. The events that5017

use the acc_data_event_info struct are:5018

acc_ev_enqueue_upload_start5019

acc_ev_enqueue_upload_end5020

acc_ev_enqueue_download_start5021

acc_ev_enqueue_download_end5022

acc_ev_create5023

acc_ev_delete5024

acc_ev_alloc5025

acc_ev_free5026

• const char* var_name - A pointer to null-terminated string containing the name of the5027

variable for which this event is triggered, if known, or a null pointer if not. If the library wants5028

to save the variable name, it must allocate memory and copy the string.5029

• size_t bytes - The number of bytes for the data event.5030

141

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

• const void* host_ptr - If available and appropriate for this event, this is a pointer to5031

the host data.5032

• const void* device_ptr - If available and appropriate for this event, this is a pointer5033

to the corresponding device data.5034

Launch Events5035

For a launch event, as noted in the event descriptions, the second argument will be a pointer to the5036

acc_launch_event_info struct.5037

typedef struct acc_launch_event_info{5038

acc_event_t event_type;5039

int valid_bytes;5040

acc_construct_t parent_construct;5041

int implicit;5042

void* tool_info;5043

const char* kernel_name;5044

size_t num_gangs, num_workers, vector_length;5045

size_t* num_gangs_per_dim;5046

}acc_launch_event_info;5047

The fields specific for a launch event are:5048

• acc_event_t event_type - The event type that triggered this callback. The events that5049

use the acc_launch_event_info struct are:5050

acc_ev_enqueue_launch_start5051

acc_ev_enqueue_launch_end5052

• const char* kernel_name - A pointer to null-terminated string containing the name of5053

the kernel being launched, if known, or a null pointer if not. If the library wants to save the5054

kernel name, it must allocate memory and copy the string.5055

• size_t num_gangs, num_workers, vector_length - The number of gangs, work-5056

ers, and vector lanes created for this kernel launch.5057

• size_t* num_gangs_per_dim - An array of size_t whose first element indicates the5058

number of dimensions of gang parallelism and each subsequent element gives the number of5059

gangs along each dimension starting with dimension 1. The product of the values of elements5060

1 through num_gangs_per_dim[0] is num_gangs.5061

Error Events5062

For an error event, as noted in the event descriptions, the second argument will be a pointer to the5063

acc_error_event_info struct.5064

typedef struct acc_error_event_info{5065

acc_event_t event_type;5066

int valid_bytes;5067

acc_construct_t parent_construct;5068

int implicit;5069

void* tool_info;5070

142

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

acc_error_t error_code;5071

const char* error_message;5072

size_t runtime_info;5073

}acc_error_event_info;5074

The enumeration type for the error code is5075

typedef enum acc_error_t{5076

acc_error_none = 0,5077

acc_error_other = 1,5078

acc_error_system = 2,5079

acc_error_execution = 3,5080

acc_error_device_init = 4,5081

acc_error_device_shutdown = 5,5082

acc_error_device_unavailable = 6,5083

acc_error_device_type_unavailable = 7,5084

acc_error_wrong_device_type = 8,5085

acc_error_out_of_memory = 9,5086

acc_error_not_present = 10,5087

acc_error_partly_present = 11,5088

acc_error_present = 12,5089

acc_error_invalid_argument = 13,5090

acc_error_invalid_async = 14,5091

acc_error_invalid_null_pointer = 15,5092

acc_error_invalid_data_section = 16,5093

acc_error_implementation_defined = 1005094

}acc_error_t;5095

The fields specific for an error event are:5096

• acc_event_t event_type - The event type that triggered this callback. The only event5097

that uses the acc_error_event_info struct is:5098

acc_ev_error5099

• int implicit - This will be set to 1.5100

• acc_error_t error_code - The error codes used are:5101

– acc_error_other is used for error conditions other than those described below.5102

– acc_error_system is used when there is a system error condition.5103

– acc_error_execution is used when there is an error condition issued from code5104

executing on the device.5105

– acc_error_device_init is used for any error initializing a device.5106

– acc_error_device_shutdown is used for any error shutting down a device.5107

– acc_error_device_unavailable is used when there is an error where the se-5108

lected device is unavailable.5109

– acc_error_device_type_unavailable is used when there is an error where5110

no device of the selected device type is available or is supported.5111

143

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

– acc_error_wrong_device_type is used when there is an error related to the5112

device type, such as a mismatch between the device type for which a compute construct5113

was compiled and the device available at runtime.5114

– acc_error_out_of_memory is used when the program tries to allocate more mem-5115

ory on the device than is available.5116

– acc_error_not_present is used for an error related to data not being present at5117

runtime.5118

– acc_error_partly_present is used for an error related to part of the data being5119

present but not being completely present at runtime.5120

– acc_error_present is used for an error related to data being unexpectedly present5121

at runtime.5122

– acc_error_invalid_argument is used when an API routine is called with a5123

invalid argument value, other than those described above.5124

– acc_error_invalid_async is used when an API routine is called with an invalid5125

async-argument, or when a directive is used with an invalid async-argument.5126

– acc_error_invalid_null_pointer is used when an API routine is called with5127

a null pointer argument where it is invalid, or when a directive is used with a null pointer5128

in a context where it is invalid.5129

– acc_error_invalid_data_section is used when an invalid array section ap-5130

pears in a directive data clause, or an invalid array section appears as a runtime API call5131

argument.5132

– acc_error_implementation_defined: any value greater or equal to this value5133

may be used for an implementation-defined error code.5134

• const char* error_message - A pointer to null-terminated string containing an error5135

message from the OpenACC runtime describing the error, or a null pointer.5136

• size_t runtime_info - A value, such as an error code, from the underlying device5137

runtime or driver, if one is available and appropriate.5138

Other Events5139

For any event that does not use the acc_data_event_info, acc_launch_event_info, or5140

acc_error_event_info struct, the second argument to the callback routine will be a pointer5141

to acc_other_event_info struct.5142

typedef struct acc_other_event_info{5143

acc_event_t event_type;5144

int valid_bytes;5145

acc_construct_t parent_construct;5146

int implicit;5147

void* tool_info;5148

}acc_other_event_info;5149

144

The OpenACC® API Version Technical Report 24-1 5.2. Callbacks Signature

Parent Construct Enumeration5150

All event structures contain a parent_construct member that describes the type of construct5151

that caused the event to be emitted. The purpose of this field is to provide a means to identify5152

the type of construct emitting the event in the cases where an event may be emitted by multi-5153

ple contruct types, such as is the case with data and wait events. The possible values for the5154

parent_construct field are defined in the enumeration type acc_construct_t. In the5155

case of combined directives, the outermost construct of the combined construct is specified as the5156

parent_construct. If the event was emitted as the result of the application making a call to5157

the runtime api, the value will be acc_construct_runtime_api.5158

typedef enum acc_construct_t{5159

acc_construct_parallel = 0,5160

acc_construct_serial = 165161

acc_construct_kernels = 1,5162

acc_construct_loop = 2,5163

acc_construct_data = 3,5164

acc_construct_enter_data = 4,5165

acc_construct_exit_data = 5,5166

acc_construct_host_data = 6,5167

acc_construct_atomic = 7,5168

acc_construct_declare = 8,5169

acc_construct_init = 9,5170

acc_construct_shutdown = 10,5171

acc_construct_set = 11,5172

acc_construct_update = 12,5173

acc_construct_routine = 13,5174

acc_construct_wait = 14,5175

acc_construct_runtime_api = 15,5176

}acc_construct_t;5177

5.2.3 Third Argument: API-Specific Information5178

The third argument is a pointer to the acc_api_info struct type, shown here.5179

typedef struct acc_api_info{5180

acc_device_api device_api;5181

int valid_bytes;5182

acc_device_t device_type;5183

int vendor;5184

const void* device_handle;5185

const void* context_handle;5186

const void* async_handle;5187

}acc_api_info;5188

The fields are described below:5189

• acc_device_api device_api - The API in use for this device. The data type is the5190

enumeration acc_device_api, which is described later in this section.5191

• int valid_bytes - The number of valid bytes in this struct. See the discussion above in5192

145

The OpenACC® API Version Technical Report 24-1 5.3. Loading the Library

Section 5.2.1 First Argument: General Information.5193

• acc_device_t device_type - The device type; the datatype is acc_device_t, de-5194

fined in openacc.h.5195

• int vendor - An identifier to identify the OpenACC vendor; contact your vendor to deter-5196

mine the value used by that vendor’s runtime.5197

• const void* device_handle - If applicable, this will be a pointer to the API-specific5198

device information.5199

• const void* context_handle - If applicable, this will be a pointer to the API-specific5200

context information.5201

• const void* async_handle - If applicable, this will be a pointer to the API-specific5202

async queue information.5203

According to the value of device_api a library can cast the pointers of the fields device_handle,5204

context_handle and async_handle to the respective device API type. The following device5205

APIs are defined in the interface below. Any implementation-defined device API type must have a5206

value greater than acc_device_api_implementation_defined.5207

typedef enum acc_device_api{
acc_device_api_none = 0, /* no device API */

acc_device_api_cuda = 1, /* CUDA driver API */

acc_device_api_opencl = 2, /* OpenCL API */

acc_device_api_other = 4, /* other device API */

acc_device_api_implementation_defined = 1000 /* other device API */5208

}acc_device_api;5209

5.3 Loading the Library5210

This section describes how a tools library is loaded when the program is run. Four methods are5211

described.5212

• A tools library may be linked with the program, as any other library is linked, either as a5213

static library or a dynamic library, and the runtime will call a predefined library initialization5214

routine that will register the event callbacks.5215

• The OpenACC runtime implementation may support a dynamic tools library, such as a shared5216

object for Linux or OS/X, or a DLL for Windows, which is then dynamically loaded at runtime5217

under control of the environment variable ACC_PROFLIB.5218

• Some implementations where the OpenACC runtime is itself implemented as a dynamic li-5219

brary may support adding a tools library using the LD_PRELOAD feature in Linux.5220

• A tools library may be linked with the program, as in the first option, and the application itself5221

may directly register event callback routines, or may invoke a library initialization routine that5222

will register the event callbacks.5223

Callbacks are registered with the runtime by calling acc_callback_register for each event5224

as described in Section 5.4 Registering Event Callbacks. The prototype for acc_callback_register5225

is:5226

146

The OpenACC® API Version Technical Report 24-1 5.3. Loading the Library

extern void acc_callback_register5227

(acc_event_t event_type, acc_callback cb,5228

acc_register_t info);5229

The first argument to acc_callback_register is the event for which a callback is being5230

registered (compare Section 5.1 Events). The second argument is a pointer to the callback routine:5231

typedef void (*acc_callback)5232

(acc_callback_info*,acc_event_info*,acc_api_info*);5233

The third argument is an enum type:5234

typedef enum acc_register_t{5235

acc_reg = 0,5236

acc_toggle = 1,5237

acc_toggle_per_thread = 25238

}acc_register_t;5239

This is usually acc_reg, but see Section 5.4.2 Disabling and Enabling Callbacks for cases where5240

different values are used.5241

An example of registering callbacks for launch, upload, and download events is:5242

acc_callback_register(acc_ev_enqueue_launch_start,5243

prof_launch, acc_reg);5244

acc_callback_register(acc_ev_enqueue_upload_start,5245

prof_data, acc_reg);5246

acc_callback_register(acc_ev_enqueue_download_start,5247

prof_data, acc_reg);5248

As shown in this example, the same routine (prof_data) can be registered for multiple events.5249

The routine can use the event_type field in the acc_callback_info structure to determine5250

for what event it was invoked.5251

The names acc_prof_register and acc_prof_unregister are preserved for backward5252

compatibility with previous versions of OpenACC.5253

5.3.1 Library Registration5254

The OpenACC runtime will invoke acc_register_library, passing the addresses of the reg-5255

istration routines acc_callback_register and acc_callback_unregister, in case5256

that routine comes from a dynamic library. In the third argument it passes the address of the lookup5257

routine acc_prof_lookup to obtain the addresses of inquiry functions. No inquiry functions5258

are defined in this profiling interface, but we preserve this argument for future support of sampling-5259

based tools.5260

Typically, the OpenACC runtime will include a weak definition of acc_register_library,5261

which does nothing and which will be called when there is no tools library. In this case, the library5262

can save the addresses of these routines and/or make registration calls to register any appropriate5263

callbacks. The prototype for acc_register_library is:5264

extern void acc_register_library5265

(acc_prof_reg reg, acc_prof_reg unreg,5266

147

The OpenACC® API Version Technical Report 24-1 5.3. Loading the Library

acc_prof_lookup_func lookup);5267

The first two arguments of this routine are of type:5268

typedef void (*acc_prof_reg)5269

(acc_event_t event_type, acc_callback cb,5270

acc_register_t info);5271

The third argument passes the address to the lookup function acc_prof_lookup to obtain the5272

address of interface functions. It is of type:5273

typedef void (*acc_query_fn)();5274

typedef acc_query_fn (*acc_prof_lookup_func)5275

(const char* acc_query_fn_name);5276

The argument of the lookup function is a string with the name of the inquiry function. There are no5277

inquiry functions defined for this interface.5278

5.3.2 Statically-Linked Library Initialization5279

A tools library can be compiled and linked directly into the application. If the library provides an5280

external routine acc_register_library as specified in Section 5.3.1Library Registration, the5281

runtime will invoke that routine to initialize the library.5282

The sequence of events is:5283

1. The runtime invokes the acc_register_library routine from the library.5284

2. The acc_register_library routine calls acc_callback_register for each event5285

to be monitored.5286

3. acc_callback_register records the callback routines.5287

4. The program runs, and your callback routines are invoked at the appropriate events.5288

In this mode, only one tool library is supported.5289

5.3.3 Runtime Dynamic Library Loading5290

A common case is to build the tools library as a dynamic library (shared object for Linux or OS/X,5291

DLL for Windows). In that case, you can have the OpenACC runtime load the library during initial-5292

ization. This allows you to enable runtime profiling without rebuilding or even relinking your ap-5293

plication. The dynamic library must implement a registration routine acc_register_library5294

as specified in Section 5.3.1 Library Registration.5295

The user may set the environment variable ACC_PROFLIB to the path to the library will tell the5296

OpenACC runtime to load your dynamic library at initialization time:5297

Bash:5298

export ACC_PROFLIB=/home/user/lib/myprof.so5299

./myapp5300

or5301

ACC_PROFLIB=/home/user/lib/myprof.so ./myapp5302

148

The OpenACC® API Version Technical Report 24-1 5.3. Loading the Library

C-shell:5303

setenv ACC_PROFLIB /home/user/lib/myprof.so5304

./myapp5305

When the OpenACC runtime initializes, it will read the ACC_PROFLIB environment variable (with5306

getenv). The runtime will open the dynamic library (using dlopen or LoadLibraryA); if5307

the library cannot be opened, the runtime may cause the program to halt execution and return an5308

error status, or may continue execution with or without an error message. If the library is success-5309

fully opened, the runtime will get the address of the acc_register_library routine (using5310

dlsym or GetProcAddress). If this routine is resolved in the library, it will be invoked pass-5311

ing in the addresses of the registration routine acc_callback_register, the deregistration5312

routine acc_callback_unregister, and the lookup routine acc_prof_lookup. The reg-5313

istration routine in your library, acc_register_library, registers the callbacks by calling the5314

register argument, and must save the addresses of the arguments (register, unregister,5315

and lookup) for later use, if needed.5316

The sequence of events is:5317

1. Initialization of the OpenACC runtime.5318

2. OpenACC runtime reads ACC_PROFLIB.5319

3. OpenACC runtime loads the library.5320

4. OpenACC runtime calls the acc_register_library routine in that library.5321

5. Your acc_register_library routine calls acc_callback_register for each event5322

to be monitored.5323

6. acc_callback_register records the callback routines.5324

7. The program runs, and your callback routines are invoked at the appropriate events.5325

If supported, paths to multiple dynamic libraries may be specified in the ACC_PROFLIB environ-5326

ment variable, separated by semicolons (;). The OpenACC runtime will open these libraries and in-5327

voke the acc_register_library routine for each, in the order they appear in ACC_PROFLIB.5328

5.3.4 Preloading with LD PRELOAD5329

The implementation may also support dynamic loading of a tools library using the LD_PRELOAD5330

feature available in some systems. In such an implementation, you need only specify your tools5331

library path in the LD_PRELOAD environment variable before executing your program. The Open-5332

ACC runtime will invoke the acc_register_library routine in your tools library at initial-5333

ization time. This requires that the OpenACC runtime include a dynamic library with a default5334

(empty) implementation of acc_register_library that will be invoked in the normal case5335

where there is no LD_PRELOAD setting. If an implementation only supports static linking, or if the5336

application is linked without dynamic library support, this feature will not be available.5337

Bash:5338

export LD_PRELOAD=/home/user/lib/myprof.so5339

./myapp5340

or5341

LD_PRELOAD=/home/user/lib/myprof.so ./myapp5342

149

The OpenACC® API Version Technical Report 24-1 5.4. Registering Event Callbacks

C-shell:5343

setenv LD_PRELOAD /home/user/lib/myprof.so5344

./myapp5345

The sequence of events is:5346

1. The operating system loader loads the library specified in LD_PRELOAD.5347

2. The call to acc_register_library in the OpenACC runtime is resolved to the routine5348

in the loaded tools library.5349

3. OpenACC runtime calls the acc_register_library routine in that library.5350

4. Your acc_register_library routine calls acc_callback_register for each event5351

to be monitored.5352

5. acc_callback_register records the callback routines.5353

6. The program runs, and your callback routines are invoked at the appropriate events.5354

In this mode, only a single tools library is supported, since only one acc_register_library5355

initialization routine will get resolved by the dynamic loader.5356

5.3.5 Application-Controlled Initialization5357

An alternative to default initialization is to have the application itself call the library initialization5358

routine, which then calls acc_callback_register for each appropriate event. The library5359

may be statically linked to the application or your application may dynamically load the library.5360

The sequence of events is:5361

1. Your application calls the library initialization routine.5362

2. The library initialization routine calls acc_callback_register for each event to be5363

monitored.5364

3. acc_callback_register records the callback routines.5365

4. The program runs, and your callback routines are invoked at the appropriate events.5366

In this mode, multiple tools libraries can be supported, with each library initialization routine in-5367

voked by the application.5368

5.4 Registering Event Callbacks5369

This section describes how to register and unregister callbacks, temporarily disabling and enabling5370

callbacks, the behavior of dynamic registration and unregistration, and requirements on an Open-5371

ACC implementation to correctly support the interface.5372

5.4.1 Event Registration and Unregistration5373

The library must call the registration routine acc_callback_register to register each call-5374

back with the runtime. A simple example:5375

extern void prof_data(acc_callback_info* profinfo,5376

acc_event_info* eventinfo, acc_api_info* apiinfo);5377

150

The OpenACC® API Version Technical Report 24-1 5.4. Registering Event Callbacks

extern void prof_launch(acc_callback_info* profinfo,5378

acc_event_info* eventinfo, acc_api_info* apiinfo);5379

. . .5380

void acc_register_library(acc_prof_reg reg,5381

acc_prof_reg unreg, acc_prof_lookup_func lookup){5382

reg(acc_ev_enqueue_upload_start, prof_data, acc_reg);5383

reg(acc_ev_enqueue_download_start, prof_data, acc_reg);5384

reg(acc_ev_enqueue_launch_start, prof_launch, acc_reg);5385

}5386

In this example the prof_data routine will be invoked for each data upload and download event,5387

and the prof_launch routine will be invoked for each launch event. The prof_data routine5388

might start out with:5389

void prof_data(acc_callback_info* profinfo,5390

acc_event_info* eventinfo, acc_api_info* apiinfo){5391

acc_data_event_info* datainfo;5392

datainfo = (acc_data_event_info*)eventinfo;5393

switch(datainfo->event_type){5394

case acc_ev_enqueue_upload_start :5395

. . .5396

}5397

}5398

Multiple Callbacks5399

Multiple callback routines can be registered on the same event:5400

acc_callback_register(acc_ev_enqueue_upload_start,5401

prof_data, acc_reg);5402

acc_callback_register(acc_ev_enqueue_upload_start,5403

prof_up, acc_reg);5404

For most events, the callbacks will be invoked in the order in which they are registered. However,5405

end events, named acc_ev_..._end, invoke callbacks in the reverse order. Essentially, each5406

event has an ordered list of callback routines. A new callback routine is appended to the tail of the5407

list for that event. For most events, that list is traversed from the head to the tail, but for end events,5408

the list is traversed from the tail to the head.5409

If a callback is registered, then later unregistered, then later still registered again, the second regis-5410

tration is considered to be a new callback, and the callback routine will then be appended to the tail5411

of the callback list for that event.5412

Unregistering5413

A matching call to acc_callback_unregister will remove that routine from the list of call-5414

back routines for that event.5415

acc_callback_register(acc_ev_enqueue_upload_start,5416

prof_data, acc_reg);5417

// prof_data is on the callback list for acc_ev_enqueue_upload_start5418

151

The OpenACC® API Version Technical Report 24-1 5.4. Registering Event Callbacks

. . .5419

acc_callback_unregister(acc_ev_enqueue_upload_start,5420

prof_data, acc_reg);5421

// prof_data is removed from the callback list5422

// for acc_ev_enqueue_upload_start5423

Each entry on the callback list must also have a ref count. This keeps track of how many times5424

this routine was added to this event’s callback list. If a routine is registered n times, it must be5425

unregistered n times before it is removed from the list. Note that if a routine is registered multiple5426

times for the same event, its ref count will be incremented with each registration, but it will only be5427

invoked once for each event instance.5428

5.4.2 Disabling and Enabling Callbacks5429

A callback routine may be temporarily disabled on the callback list for an event, then later re-5430

enabled. The behavior is slightly different than unregistering and later re-registering that event.5431

When a routine is disabled and later re-enabled, the routine’s position on the callback list for that5432

event is preserved. When a routine is unregistered and later re-registered, the routine’s position on5433

the callback list for that event will move to the tail of the list. Also, unregistering a callback must be5434

done n times if the callback routine was registered n times. In contrast, disabling, and enabling an5435

event sets a toggle. Disabling a callback will immediately reset the toggle and disable calls to that5436

routine for that event, even if it was enabled multiple times. Enabling a callback will immediately5437

set the toggle and enable calls to that routine for that event, even if it was disabled multiple times.5438

Registering a new callback initially sets the toggle.5439

A call to acc_callback_unregister with a value of acc_toggle as the third argument5440

will disable callbacks to the given routine. A call to acc_callback_register with a value of5441

acc_toggle as the third argument will enable those callbacks.5442

acc_callback_unregister(acc_ev_enqueue_upload_start,5443

prof_data, acc_toggle);5444

// prof_data is disabled5445

. . .5446

acc_callback_register(acc_ev_enqueue_upload_start,5447

prof_data, acc_toggle);5448

// prof_data is re-enabled5449

A call to either acc_callback_unregister or acc_callback_register to disable or5450

enable a callback when that callback is not currently registered for that event will be ignored with5451

no error.5452

All callbacks for an event may be disabled (and re-enabled) by passing NULL to the second argument5453

and acc_toggle to the third argument of acc_callback_unregister (and5454

acc_callback_register). This sets a toggle for that event, which is distinct from the toggle5455

for each callback for that event. While the event is disabled, no callbacks for that event will be5456

invoked. Callbacks for that event can be registered, unregistered, enabled, and disabled while that5457

event is disabled, but no callbacks will be invoked for that event until the event itself is enabled.5458

Initially, all events are enabled.5459

acc_callback_unregister(acc_ev_enqueue_upload_start,5460

prof_data, acc_toggle);5461

152

The OpenACC® API Version Technical Report 24-1 5.5. Advanced Topics

// prof_data is disabled5462

. . .5463

acc_callback_unregister(acc_ev_enqueue_upload_start,5464

NULL, acc_toggle);5465

// acc_ev_enqueue_upload_start callbacks are disabled5466

. . .5467

acc_callback_register(acc_ev_enqueue_upload_start,5468

prof_data, acc_toggle);5469

// prof_data is re-enabled, but5470

// acc_ev_enqueue_upload_start callbacks still disabled5471

. . .5472

acc_callback_register(acc_ev_enqueue_upload_start,5473

prof_up, acc_reg);5474

// prof_up is registered and initially enabled, but5475

// acc_ev_enqueue_upload_start callbacks still disabled5476

. . .5477

acc_callback_register(acc_ev_enqueue_upload_start,5478

NULL, acc_toggle);5479

// acc_ev_enqueue_upload_start callbacks are enabled5480

5481

Finally, all callbacks can be disabled (and enabled) by passing the argument list (acc_ev_none,5482

NULL, acc_toggle) to acc_callback_unregister (and acc_callback_register).5483

This sets a global toggle disabling all callbacks, which is distinct from the toggle enabling callbacks5484

for each event and the toggle enabling each callback routine.5485

The behavior of passing acc_ev_none as the first argument and a non-NULL value as the second5486

argument to acc_callback_unregister or acc_callback_register is not defined,5487

and may be ignored by the runtime without error.5488

All callbacks can be disabled (or enabled) for just the current thread by passing the argument list5489

(acc_ev_none, NULL, acc_toggle_per_thread) to acc_callback_unregister5490

(and acc_callback_register). This is the only thread-specific interface to5491

acc_callback_register and acc_callback_unregister, all other calls to register,5492

unregister, enable, or disable callbacks affect all threads in the application.5493

5.5 Advanced Topics5494

This section describes advanced topics such as dynamic registration and changes of the execution5495

state for callback routines as well as the runtime and tool behavior for multiple host threads.5496

5.5.1 Dynamic Behavior5497

Callback routines may be registered or unregistered, enabled or disabled at any point in the execution5498

of the program. Calls may appear in the library itself, during the processing of an event. The5499

OpenACC runtime must allow for this case, where the callback list for an event is modified while5500

that event is being processed.5501

153

The OpenACC® API Version Technical Report 24-1 5.5. Advanced Topics

Dynamic Registration and Unregistration5502

Calls to acc_register and acc_unregister may occur at any point in the application. A5503

callback routine can be registered or unregistered from a callback routine, either the same routine5504

or another routine, for a different event or the same event for which the callback was invoked. If a5505

callback routine is registered for an event while that event is being processed, then the new callback5506

routine will be added to the tail of the list of callback routines for this event. Some events (the5507

_end) events process the callback routines in reverse order, from the tail to the head. For those5508

events, adding a new callback routine will not cause the new routine to be invoked for this instance5509

of the event. The other events process the callback routines in registration order, from the head5510

to the tail. Adding a new callback routine for such an event will cause the runtime to invoke that5511

newly registered callback routine for this instance of the event. Both the runtime and the library5512

must implement and expect this behavior.5513

If an existing callback routine is unregistered for an event while that event is being processed, that5514

callback routine is removed from the list of callbacks for this event. For any event, if that callback5515

routine had not yet been invoked for this instance of the event, it will not be invoked.5516

Registering and unregistering a callback routine is a global operation and affects all threads, in a5517

multithreaded application. See Section 5.4.1 Multiple Callbacks.5518

Dynamic Enabling and Disabling5519

Calls to acc_register and acc_unregister to enable and disable a specific callback for5520

an event, enable or disable all callbacks for an event, or enable or disable all callbacks may occur5521

at any point in the application. A callback routine can be enabled or disabled from a callback5522

routine, either the same routine or another routine, for a different event or the same event for which5523

the callback was invoked. If a callback routine is enabled for an event while that event is being5524

processed, then the new callback routine will be immediately enabled. If it appears on the list of5525

callback routines closer to the head (for _end events) or closer to the tail (for other events), that5526

newly-enabled callback routine will be invoked for this instance of this event, unless it is disabled5527

or unregistered before that callback is reached.5528

If a callback routine is disabled for an event while that event is being processed, that callback routine5529

is immediately disabled. For any event, if that callback routine had not yet been invoked for this in-5530

stance of the event, it will not be invoked, unless it is enabled before that callback routine is reached5531

in the list of callbacks for this event. If all callbacks for an event are disabled while that event is5532

being processed, or all callbacks are disabled for all events while an event is being processed, then5533

when this callback routine returns, no more callbacks will be invoked for this instance of the event.5534

Registering and unregistering a callback routine is a global operation and affects all threads, in a5535

multithreaded application. See Section 5.4.1 Multiple Callbacks.5536

5.5.2 OpenACC Events During Event Processing5537

OpenACC events may occur during event processing. This may be because of OpenACC API rou-5538

tine calls or OpenACC constructs being reached during event processing, or because of multiple host5539

threads executing asynchronously. Both the OpenACC runtime and the tool library must implement5540

the proper behavior.5541

154

The OpenACC® API Version Technical Report 24-1 5.5. Advanced Topics

5.5.3 Multiple Host Threads5542

Many programs that use OpenACC also use multiple host threads, such as programs using the5543

OpenMP API. The appearance of multiple host threads affects both the OpenACC runtime and the5544

tools library.5545

Runtime Support for Multiple Threads5546

The OpenACC runtime must be thread-safe, and the OpenACC runtime implementation of this5547

tools interface must also be thread-safe. All threads use the same set of callbacks for all events, so5548

registering a callback from one thread will cause all threads to execute that callback. This means that5549

managing the callback lists for each event must be protected from multiple simultaneous updates.5550

This includes adding a callback to the tail of the callback list for an event, removing a callback from5551

the list for an event, and incrementing or decrementing the ref count for a callback routine for an5552

event.5553

In addition, one thread may register, unregister, enable, or disable a callback for an event while5554

another thread is processing the callback list for that event asynchronously. The exact behavior may5555

be dependent on the implementation, but some behaviors are expected and others are disallowed.5556

In the following examples, there are three callbacks, A, B, and C, registered for event E in that5557

order, where callbacks A and B are enabled and callback C is temporarily disabled. Thread T1 is5558

dynamically modifying the callbacks for event E while thread T2 is processing an instance of event5559

E.5560

• Suppose thread T1 unregisters or disables callback A for event E. Thread T2 may or may not5561

invoke callback A for this event instance, but it must invoke callback B; if it invokes callback5562

A, that must precede the invocation of callback B.5563

• Suppose thread T1 unregisters or disables callback B for event E. Thread T2 may or may not5564

invoke callback B for this event instance, but it must invoke callback A; if it invokes callback5565

B, that must follow the invocation of callback A.5566

• Suppose thread T1 unregisters or disables callback A and then unregisters or disables callback5567

B for event E. Thread T2 may or may not invoke callback A and may or may not invoke5568

callback B for this event instance, but if it invokes both callbacks, it must invoke callback A5569

before it invokes callback B.5570

• Suppose thread T1 unregisters or disables callback B and then unregisters or disables callback5571

A for event E. Thread T2 may or may not invoke callback A and may or may not invoke5572

callback B for this event instance, but if it invokes callback B, it must have invoked callback5573

A for this event instance.5574

• Suppose thread T1 is registering a new callback D for event E. Thread T2 may or may not5575

invoke callback D for this event instance, but it must invoke both callbacks A and B. If it5576

invokes callback D, that must follow the invocations of A and B.5577

• Suppose thread T1 is enabling callback C for event E. Thread T2 may or may not invoke5578

callback C for this event instance, but it must invoke both callbacks A and B. If it invokes5579

callback C, that must follow the invocations of A and B.5580

The acc_callback_info struct has a thread_id field, which the runtime must set to a5581

unique value for each host thread, though it need not be the same as the OpenMP threadnum value.5582

155

The OpenACC® API Version Technical Report 24-1 5.5. Advanced Topics

Library Support for Multiple Threads5583

The tool library must also be thread-safe. The callback routine will be invoked in the context of the5584

thread that reaches the event. The library may receive a callback from a thread T2 while it’s still5585

processing a callback, from the same event type or from a different event type, from another thread5586

T1. The acc_callback_info struct has a thread_id field, which the runtime must set to a5587

unique value for each host thread.5588

If the tool library uses dynamic callback registration and unregistration, or callback disabling and5589

enabling, recall that unregistering or disabling an event callback from one thread will unregister or5590

disable that callback for all threads, and registering or enabling an event callback from any thread5591

will register or enable it for all threads. If two or more threads register the same callback for the5592

same event, the behavior is the same as if one thread registered that callback multiple times; see5593

Section 5.4.1 Multiple Callbacks. The acc_unregister routine must be called as many times5594

as acc_register for that callback/event pair in order to totally unregister it. If two threads5595

register two different callback routines for the same event, unless the order of the registration calls5596

is guaranteed by some sychronization method, the order in which the runtime sees the registration5597

may differ for multiple runs, meaning the order in which the callbacks occur will differ as well.5598

156

The OpenACC® API Version Technical Report 24-1 6. Glossary

6. Glossary5599

Clear and consistent terminology is important in describing any programming model. We define5600

here the terms you must understand in order to make effective use of this document and the asso-5601

ciated programming model. In particular, some terms used in this specification conflict with their5602

usage in the base language specifications. When there is potential confusion, the term will appear5603

here.5604

Accelerator – a device attached to a CPU and to which the CPU can offload data and compute5605

kernels to perform compute-intensive calculations.5606

Accelerator routine – a procedure compiled for the accelerator with the routine directive.5607

Accelerator thread – a thread of execution that executes on the accelerator; a single vector lane of5608

a single worker of a single gang.5609

Aggregate datatype – any non-scalar datatype such as array and composite datatypes. In Fortran,5610

aggregate datatypes include arrays, derived types, character types. In C, aggregate datatypes include5611

arrays, targets of pointers, structs, and unions. In C++, aggregate datatypes include arrays, targets5612

of pointers, classes, structs, and unions.5613

Aggregate variables – a variable of any non-scalar datatype, including array or composite variables.5614

In Fortran, this includes any variable with allocatable or pointer attribute and character variables.5615

Async-argument – an async-argument is a nonnegative scalar integer expression (int for C or C++,5616

integer for Fortran), or one of the special values acc_async_noval or acc_async_sync.5617

Barrier – a type of synchronization where all parallel execution units or threads must reach the5618

barrier before any execution unit or thread is allowed to proceed beyond the barrier; modeled after5619

the starting barrier on a horse race track.5620

Block construct – a block-construct, as specified by the Fortran language.5621

Captured variable – a variable for which a distinct copy from its original variable exists in the5622

device-accessible memory. Such variable is only captured from the time its copy is created and5623

until such a copy is deleted.5624

Composite datatype – a derived type in Fortran, or a struct or union type in C, or a class,5625

struct, or union type in C++. (This is different from the use of the term composite data type in5626

the C and C++ languages.)5627

Composite variable – a variable of composite datatype. In Fortran, a composite variable must not5628

have allocatable or pointer attributes.5629

Compute construct – a parallel construct, serial construct, or kernels construct.5630

Compute intensity – for a given loop, region, or program unit, the ratio of the number of arithmetic5631

operations performed on computed data divided by the number of memory transfers required to5632

move that data between two levels of a memory hierarchy.5633

Compute region – a parallel region, serial region, or kernels region.5634

Construct – a directive and the associated statement, loop, or structured block, if any.5635

157

The OpenACC® API Version Technical Report 24-1 6. Glossary

CUDA – the CUDA environment from NVIDIA, a C-like programming environment used to ex-5636

plicitly control and program an NVIDIA GPU.5637

Current device – the device represented by the acc-current-device-type-var and acc-current-device-5638

num-var ICVs5639

Current device type – the device type represented by the acc-current-device-type-var ICV5640

Data lifetime – the lifetime of a data object in device memory, which may begin at the entry to5641

a data region, or at an enter data directive, or at a data API call such as acc_copyin or5642

acc_create, and which may end at the exit from a data region, or at an exit data directive,5643

or at a data API call such as acc_delete, acc_copyout, or acc_shutdown, or at the end of5644

the program execution.5645

Data region – a region defined by a data construct, or an implicit data region for a function or5646

subroutine containing OpenACC directives. Data constructs typically allocate device memory and5647

copy data from host to device memory upon entry, and copy data from device to local memory and5648

deallocate device memory upon exit. Data regions may contain other data regions and compute5649

regions.5650

Default asynchronous queue – the asynchronous activity queue represented in the acc-default-5651

async-var ICV5652

Device – a general reference to an accelerator or a multicore CPU.5653

Device-accessible memory – any memory which can be accessed from the device.5654

Device memory – memory attached to a device, logically and physically separate from the host5655

memory.5656

Device thread – a thread of execution that executes on any device.5657

Directive – in C or C++, a #pragma, or in Fortran, a specially formatted comment statement, that5658

is interpreted by a compiler to augment information about or specify the behavior of the program.5659

Discrete memory – memory accessible from the local thread that is not accessible from the current5660

device, or memory accessible from the current device that is not accessible from the local thread.5661

DMA – Direct Memory Access, a method to move data between physically separate memories;5662

this is typically performed by a DMA engine, separate from the host CPU, that can access the host5663

physical memory as well as an IO device or other physical memory.5664

Exposed variable access – with respect to a compute construct, any access to the data or address5665

of a variable at a point within the compute construct where the variable is not private to a scope5666

lexically enclosed within the compute construct. See Section 2.6.2.5667

false – a condition that evaluates to zero in C or C++, or .false. in Fortran.5668

GPU – a Graphics Processing Unit; one type of accelerator.5669

GPGPU – General Purpose computation on Graphics Processing Units.5670

Host – the main CPU that in this context may have one or more attached accelerators. The host5671

CPU controls the program regions and data loaded into and executed on one or more devices.5672

Host thread – a thread of execution that executes on the host.5673

158

The OpenACC® API Version Technical Report 24-1 6. Glossary

Implicit data region – the data region that is implicitly defined for a Fortran subprogram or C5674

function. A call to a subprogram or function enters the implicit data region, and a return from the5675

subprogram or function exits the implicit data region.5676

Kernel – a nested loop executed in parallel by the accelerator. Typically the loops are divided into5677

a parallel domain, and the body of the loop becomes the body of the kernel.5678

Kernels region – a region defined by a kernels construct. A kernels region is a structured block5679

which is compiled for the accelerator. The code in the kernels region will be divided by the compiler5680

into a sequence of kernels; typically each loop nest will become a single kernel. A kernels region5681

may require space in device memory to be allocated and data to be copied from local memory to5682

device memory upon region entry, and data to be copied from device memory to local memory and5683

space in device memory to be deallocated upon exit.5684

Level of parallelism – one of the following, which are arranged from the highest to the lowest level:5685

gang dimension three, gang dimension two, gang dimension one, worker, vector, or sequential.5686

One or more of gang, worker, and vector parallelism may appear on a loop construct. Sequential5687

execution corresponds to no parallelism. The gang, worker, vector, and seq clauses specify5688

the level of parallelism for a loop.5689

Local device – the device where the local thread executes.5690

Local memory – the memory associated with the local thread.5691

Local thread – the host thread or the accelerator thread that executes an OpenACC directive or5692

construct.5693

Loop trip count – the number of times a particular loop executes.5694

MIMD – a method of parallel execution (Multiple Instruction, Multiple Data) where different exe-5695

cution units or threads execute different instruction streams asynchronously with each other.5696

null pointer – a C or C++ pointer variable with the value zero, NULL, or (in C++) nullptr, or a5697

Fortran pointer variable that is not associated, or a Fortran allocatable variable that is not5698

allocated.5699

OpenCL – short for Open Compute Language, a developing, portable standard C-like programming5700

environment that enables low-level general-purpose programming on GPUs and other accelerators.5701

Orphaned loop construct – a loop construct that has no parent compute construct.5702

Parallel region – a region defined by a parallel construct. A parallel region is a structured block5703

which is compiled for the accelerator. A parallel region typically contains one or more work-sharing5704

loops. A parallel region may require space in device memory to be allocated and data to be copied5705

from local memory to device memory upon region entry, and data to be copied from device memory5706

to local memory and space in device memory to be deallocated upon exit.5707

Parent compute construct – for any point in the program, the nearest lexically enclosing compute5708

construct that has the same parent procedure.5709

Parent compute scope – for any point in the program, the parent compute construct or, if none, the5710

parent procedure.5711

Parent procedure – for any point in the program, the nearest lexically enclosing procedure such5712

that expressions at this point are not evaluated until the procedure is called.5713

159

The OpenACC® API Version Technical Report 24-1 6. Glossary

Partly present data – a section of data for which some of the data is present in a single device5714

memory section, but part of the data is either not present or is present in a different device memory5715

section. For instance, if a subarray of an array is present, the array is partly present.5716

Present data – data for which the sum of the structured and dynamic reference counters is greater5717

than zero in a single device memory section; see Section 2.6.7. A null pointer is defined as always5718

present with a length of zero bytes.5719

Private data – with respect to an iterative loop, data which is used only during a particular loop5720

iteration. With respect to a more general region of code, data which is used within the region but is5721

not initialized prior to the region and is re-initialized prior to any use after the region.5722

Procedure – in C or C++, a function or C++ lambda; in Fortran, a subroutine or function.5723

Region – all the code encountered during an instance of execution of a construct. A region includes5724

any code in called routines, and may be thought of as the dynamic extent of a construct. This may5725

be a parallel region, serial region, kernels region, data region, or implicit data region.5726

Scalar – a variable of scalar datatype. In Fortran, scalars must not have allocatable or pointer5727

attributes.5728

Scalar datatype – an intrinsic or built-in datatype that is not an array or aggregate datatype. In For-5729

tran, scalar datatypes are integer, real, double precision, complex, or logical. In C, scalar datatypes5730

are char (signed or unsigned), int (signed or unsigned, with optional short, long or long long at-5731

tribute), enum, float, double, long double, Complex (with optional float or long attribute), or any5732

pointer datatype. In C++, scalar datatypes are char (signed or unsigned), wchar t, int (signed or5733

unsigned, with optional short, long or long long attribute), enum, bool, float, double, long double,5734

or any pointer datatype. Not all implementations or targets will support all of these datatypes.5735

Serial region – a region defined by a serial construct. A serial region is a structured block which5736

is compiled for the accelerator. A serial region contains code that is executed by a single gang of a5737

single worker with a vector length of one. A serial region may require space in device memory to be5738

allocated and data to be copied from local memory to device memory upon region entry, and data5739

to be copied from device memory to local memory and space in device memory to be deallocated5740

upon exit.5741

Shared memory – memory that is accessible from both the local thread and the current device.5742

SIMD – a method of parallel execution (single-instruction, multiple-data) where the same instruc-5743

tion is applied to multiple data elements simultaneously.5744

SIMD operation – a vector operation implemented with SIMD instructions.5745

Structured block – in C or C++, an executable statement, possibly compound, with a single entry5746

at the top and a single exit at the bottom. In Fortran, a block of executable statements with a single5747

entry at the top and a single exit at the bottom.5748

Thread – a host CPU thread or an accelerator thread. On a host CPU, a thread is defined by a5749

program counter and stack location; several host threads may comprise a process and share host5750

memory. On an accelerator, a thread is any one vector lane of one worker of one gang.5751

true – a condition that evaluates to nonzero in C or C++, or .true. in Fortran.5752

var – the name of a variable (scalar, array, or composite variable), or a subarray specification, or an5753

array element, or a composite variable member, or the name of a Fortran common block between5754

160

The OpenACC® API Version Technical Report 24-1 6. Glossary

slashes.5755

Vector operation – a single operation or sequence of operations applied uniformly to each element5756

of an array.5757

Visible data clause – with respect to a compute construct, any data clause on the compute con-5758

struct, on a lexically enclosing data construct that has the same parent procedure, or on a visible5759

declare directive. See Section 2.6.2.5760

Visible default clause – with respect to a compute construct, the nearest default clause ap-5761

pearing on the compute construct or on a lexically enclosing data construct that has the same5762

parent procedure. See Section 2.6.2.5763

Visible device copy – a copy of a variable, array, or subarray allocated in device memory that is5764

visible to the program unit being compiled.5765

161

The OpenACC® API Version Technical Report 24-1 6. Glossary

162

The OpenACC® API Version Technical Report 24-1 A.1. Target Devices

A. Recommendations for Implementers5766

This section gives recommendations for standard names and extensions to use for implementations5767

for specific targets and target platforms, to promote portability across such implementations, and5768

recommended options that programmers find useful. While this appendix is not part of the Open-5769

ACC specification, implementations that provide the functionality specified herein are strongly rec-5770

ommended to use the names in this section. The first subsection describes devices, such as NVIDIA5771

GPUs. The second subsection describes additional API routines for target platforms, such as CUDA5772

and OpenCL. The third subsection lists several recommended options for implementations.5773

A.1 Target Devices5774

A.1.1 NVIDIA GPU Targets5775

This section gives recommendations for implementations that target NVIDIA GPU devices.5776

Accelerator Device Type5777

These implementations should use the name acc_device_nvidia for the acc_device_t5778

type or return values from OpenACC Runtime API routines.5779

ACC DEVICE TYPE5780

An implementation should use the case-insensitive name nvidia for the environment variable5781

ACC_DEVICE_TYPE.5782

device type clause argument5783

An implementation should use the case-insensitive name nvidia as the argument to the device_type5784

clause.5785

A.1.2 AMD GPU Targets5786

This section gives recommendations for implementations that target AMD GPUs.5787

Accelerator Device Type5788

These implementations should use the name acc_device_radeon for the acc_device_t5789

type or return values from OpenACC Runtime API routines.5790

ACC DEVICE TYPE5791

These implementations should use the case-insensitive name radeon for the environment variable5792

ACC_DEVICE_TYPE.5793

device type clause argument5794

An implementation should use the case-insensitive name radeon as the argument to the device_type5795

clause.5796

163

The OpenACC® API Version Technical Report 24-1 A.2. API Routines for Target Platforms

A.1.3 Multicore Host CPU Target5797

This section gives recommendations for implementations that target the multicore host CPU.5798

Accelerator Device Type5799

These implementations should use the name acc_device_host for the acc_device_t type5800

or return values from OpenACC Runtime API routines.5801

ACC DEVICE TYPE5802

These implementations should use the case-insensitive name host for the environment variable5803

ACC_DEVICE_TYPE.5804

device type clause argument5805

An implementation should use the case-insensitive name host as the argument to the device_type5806

clause.5807

routine directive5808

Given a routine directive for a procedure, an implementation should:5809

• Suppress the procedure’s compilation for the multicore host CPU if a nohost clause appears.5810

• Ignore any bind clause when compiling the procedure for the multicore host CPU.5811

• Disallow a bind clause to appear after a device_type(host) clause.5812

A.2 API Routines for Target Platforms5813

These runtime routines allow access to the interface between the OpenACC runtime API and the5814

underlying target platform. An implementation may not implement all these routines, but if it5815

provides this functionality, it should use these function names.5816

A.2.1 NVIDIA CUDA Platform5817

This section gives runtime API routines for implementations that target the NVIDIA CUDA Run-5818

time or Driver API.5819

acc get current cuda device5820

Summary5821

The acc_get_current_cuda_device routine returns the NVIDIA CUDA device handle for5822

the current device.5823

Format5824

C or C++:5825

void* acc_get_current_cuda_device ();5826

164

The OpenACC® API Version Technical Report 24-1 A.2. API Routines for Target Platforms

acc get current cuda context5827

Summary5828

The acc_get_current_cuda_context routine returns the NVIDIA CUDA context handle5829

in use for the current device.5830

Format5831

C or C++:5832

void* acc_get_current_cuda_context ();5833

acc get cuda stream5834

Summary5835

The acc_get_cuda_stream routine returns the NVIDIA CUDA stream handle in use for the5836

current device for the asynchronous activity queue associated with the async argument. This5837

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.5838

Format5839

C or C++:5840

void* acc_get_cuda_stream (int async);5841

acc set cuda stream5842

Summary5843

The acc_set_cuda_stream routine sets the NVIDIA CUDA stream handle the current device5844

for the asynchronous activity queue associated with the async argument. This argument must be5845

an async-argument as defined in Section 2.16 Asynchronous Behavior.5846

Format5847

C or C++:5848

void acc_set_cuda_stream (int async, void* stream);5849

A.2.2 OpenCL Target Platform5850

This section gives runtime API routines for implementations that target the OpenCL API on any5851

device.5852

acc get current opencl device5853

Summary5854

The acc_get_current_opencl_device routine returns the OpenCL device handle for the5855

current device.5856

Format5857

C or C++:5858

void* acc_get_current_opencl_device ();5859

acc get current opencl context5860

Summary5861

The acc_get_current_opencl_context routine returns the OpenCL context handle in use5862

for the current device.5863

165

The OpenACC® API Version Technical Report 24-1 A.3. Recommended Options and Diagnostics

Format5864

C or C++:5865

void* acc_get_current_opencl_context ();5866

acc get opencl queue5867

Summary5868

The acc_get_opencl_queue routine returns the OpenCL command queue handle in use for5869

the current device for the asynchronous activity queue associated with the async argument. This5870

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.5871

Format5872

C or C++:5873

cl_command_queue acc_get_opencl_queue (int async);5874

acc set opencl queue5875

Summary5876

The acc_set_opencl_queue routine returns the OpenCL command queue handle in use for5877

the current device for the asynchronous activity queue associated with the async argument. This5878

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.5879

Format5880

C or C++:5881

void acc_set_opencl_queue (int async, cl_command_queue cmdqueue5882

);5883

A.3 Recommended Options and Diagnostics5884

This section recommends options and diagnostics for implementations. Possible ways to implement5885

the options include command-line options to a compiler or settings in an IDE.5886

A.3.1 C Pointer in Present clause5887

This revision of OpenACC clarifies the construct:5888

void test(int n){5889

float* p;5890

. . .5891

#pragma acc data present(p)5892

{5893

// code here. . .5894

}5895

This example tests whether the pointer p itself is present in the current device memory. Implemen-5896

tations before this revision commonly implemented this by testing whether the pointer target p[0]5897

was present in the current device memory, and this appears in many programs assuming such. Until5898

such programs are modified to comply with this revision, an option to implement present(p) as5899

present(p[0]) for C pointers may be helpful to users.5900

166

The OpenACC® API Version Technical Report 24-1 A.3. Recommended Options and Diagnostics

A.3.2 Nonconforming Applications and Implementations5901

Where feasible, implementations should diagnose OpenACC applications that do not conform with5902

this specification’s syntactic or semantic restrictions. Many but not all of these restrictions appear5903

in lists entitled “Restrictions.”5904

While compile-time diagnostics are preferable (e.g., invalid clauses on a directive), some cases of5905

nonconformity are more feasible to diagnose at run time (e.g., see Section 1.5). Where implemen-5906

tations are not able to diagnose nonconformity reliably (e.g., an independent clause on a loop5907

with data-dependent loop iterations), they might offer no diagnostics, or they might diagnose only5908

subcases.5909

In order to support OpenACC extensions, some implementations intentionally accept nonconform-5910

ing OpenACC applications without issuing diagnostics by default, and some implementations accept5911

conforming OpenACC applications but interpret their semantics differently than as detailed in this5912

specification. To promote program portability across implementations, implementations should pro-5913

vide an option to disable or report uses of these extensions. Some such extensions and diagnostics5914

are described in detail in the remainder of this section.5915

A.3.3 Automatic Data Attributes5916

Some implementations provide autoscoping or other analysis to automatically determine a variable’s5917

data attributes, including the addition of reduction, private, and firstprivate clauses. To promote5918

program portability across implementations, it would be helpful to provide an option to disable5919

the automatic determination of data attributes or report which variables’ data attributes are not as5920

defined in Section 2.6.5921

A.3.4 Routine Directive with a Name5922

In C and C++, if a routine directive with a name appears immediately before a procedure dec-5923

laration or definition with that name, it does not necessarily apply to that procedure according to5924

Section 2.15.1 and C and C++ name resolution. Implementations should issue diagnostics in the5925

following two cases:5926

1. When no procedure with that name is already in scope, the directive is nonconforming, so5927

implementations should issue a compile-time error diagnostic regardless of the following5928

procedure. For example:5929

#pragma acc routine(f) seq // compile-time error5930

void f();5931

2. When a procedure with that name is in scope and it is not the same procedure as the immedi-5932

ately following procedure declaration or definition, the resolution of the name can be confus-5933

ing. Implementations should then issue a compile-time warning diagnostic even though the5934

application is conforming. For example:5935

void g(); // routine directive applies5936

namespace NS {5937

#pragma acc routine(g) seq // compile-time warning5938

void g(); // routine directive does not apply5939

}5940

167

The OpenACC® API Version Technical Report 24-1 A.3. Recommended Options and Diagnostics

The diagnostic in this case should suggest the programmer either (1) relocate the routine5941

directive so that it more clearly applies to the procedure that is in scope or (2) remove the5942

name from the routine directive so that it applies to the following procedure.5943

168

Index
_OPENACC, 30, 1395944

acc-current-device-num-var, 315945

acc-current-device-type-var, 315946

acc-default-async-var, 31, 955947

acc_async_noval, 955948

acc_async_sync, 955949

acc_device_host, 1645950

ACC_DEVICE_NUM, 31, 1315951

acc_device_nvidia, 1635952

acc_device_radeon, 1635953

ACC_DEVICE_TYPE, 31, 131, 163, 1645954

ACC_PROFLIB, 1315955

accelerator routine, 885956

action5957

allocate memory, 505958

attach, 475959

attach pointer, 515960

detach, 475961

detach pointer, 525962

allocate memory action, 505963

AMD GPU target, 1635964

async clause, 44, 46, 86, 965965

async queue, 115966

async-argument, 965967

asynchronous execution, 11, 955968

atomic construct, 745969

attach action, 475970

attach clause, 595971

attach pointer action, 515972

attachment counter, 475973

auto clause, 64, 66, 89, 935974

portability, 655975

autoscoping, 1675976

barrier synchronization, 11, 34, 36, 1575977

bind clause, 905978

block construct, 1575979

cache directive, 725980

capture clause, 775981

collapse clause, 635982

common block, 48, 79, 955983

compiler options, 1665984

compute construct, 1575985

parent, 335986

compute region, 1575987

construct, 1575988

atomic, 745989

compute, 1575990

data, 43, 485991

host_data, 595992

kernels, 35, 485993

kernels loop, 725994

parallel, 33, 485995

parallel loop, 725996

serial, 35, 485997

serial loop, 725998

copy clause, 41, 545999

copyin clause, 556000

copyout clause, 566001

create clause, 57, 806002

CUDA, 12, 158, 163, 1646003

data attribute6004

explicitly determined, 406005

implicitly determined, 406006

predetermined, 406007

data clause, 486008

visible, 41, 1616009

data construct, 43, 486010

data lifetime, 1586011

data region, 42, 1586012

implicit, 426013

data-independent loop construct, 626014

declare directive, 786015

default clause, 40, 446016

visible, 41, 1616017

default(none) clause, 416018

default(present), 416019

delete clause, 586020

detach action, 476021

detach clause, 596022

detach pointer action, 526023

device clause, 866024

device_resident clause, 796025

device_type clause, 31, 48, 163, 1646026

deviceptr clause, 48, 536027

diagnostics, 1666028

direct memory access, 11, 1586029

DMA, 11, 1586030

169

The OpenACC® API Version Technical Report 24-1 Index

enter data directive, 45, 486031

environment variable6032

_OPENACC, 306033

ACC_DEVICE_NUM, 31, 1316034

ACC_DEVICE_TYPE, 31, 131, 163, 1646035

ACC_PROFLIB, 1316036

exit data directive, 45, 486037

explicitly determined data attribute, 406038

exposed variable access, 41, 1586039

extensions, 1676040

firstprivate clause, 38, 416041

gang, 346042

gang clause, 64, 896043

implicit, 64, 936044

portability, 656045

gang parallelism, 106046

gang-arg, 616047

gang-partitioned mode, 106048

optimizations, 656049

gang-redundant mode, 10, 346050

GR mode, 106051

host, 1646052

host clause, 866053

host_data construct, 596054

ICV, 316055

if clause6056

compute construct, 376057

data construct, 446058

enter data directive, 466059

exit data directive, 466060

host_data construct, 606061

init directive, 826062

set directive, 846063

shutdown directive, 836064

update directive, 866065

wait directive, 986066

implicit data region, 426067

implicit gang clause, 64, 936068

implicit routine directive, 64, 896069

implicitly determined data attribute, 406070

independent clause, 666071

init directive, 816072

internal control variable, 316073

kernels construct, 35, 486074

kernels loop construct, 726075

level of parallelism, 10, 1596076

link clause, 48, 816077

local device, 116078

local memory, 116079

local thread, 116080

loop construct, 616081

data-independent, 626082

orphaned, 616083

sequential, 626084

no_create clause, 576085

nohost clause, 906086

nonconformity, 1676087

num_gangs clause, 376088

num_workers clause, 386089

nvidia, 1636090

NVIDIA GPU target, 1636091

OpenCL, 12, 159, 163, 1656092

optimizations6093

gang-partitioned mode, 656094

routine directive, 946095

orphaned loop construct, 616096

parallel construct, 33, 486097

parallel loop construct, 726098

parallelism6099

level, 10, 1596100

parent compute construct, 336101

parent compute scope, 336102

parent procedure, 336103

pointer in present clause, 1666104

portability6105

auto and gang clauses, 656106

predetermined data attribute, 406107

present clause, 41, 48, 536108

pointer, 1666109

private clause, 38, 676110

procedure6111

parent, 336112

radeon, 1636113

read clause, 776114

reduction clause, 39, 686115

reference counter, 476116

region6117

compute, 1576118

170

The OpenACC® API Version Technical Report 24-1 Index

data, 42, 1586119

implicit data, 426120

routine directive, 88, 1676121

implicit, 64, 896122

optimizations, 946123

self clause, 866124

compute construct, 376125

update directive, 866126

sentinel, 296127

seq clause, 66, 906128

sequential loop construct, 626129

serial construct, 35, 486130

serial loop construct, 726131

shutdown directive, 836132

size-expr, 616133

structured-block, 1606134

thread, 1606135

tile clause, 666136

update clause, 776137

update directive, 856138

use_device clause, 606139

vector clause, 65, 906140

vector lane, 346141

vector parallelism, 106142

vector-partitioned mode, 106143

vector-single mode, 106144

vector_length clause, 386145

visible data clause, 41, 1616146

visible default clause, 41, 1616147

visible device copy, 1616148

VP mode, 106149

VS mode, 106150

wait clause, 44, 46, 86, 976151

wait directive, 976152

worker, 346153

worker clause, 65, 896154

worker parallelism, 106155

worker-partitioned mode, 106156

worker-single mode, 106157

WP mode, 106158

WS mode, 106159

171

	Introduction
	Scope
	Execution Model
	Memory Model
	Language Interoperability
	Runtime Errors
	Conventions used in this document
	Organization of this document
	References
	Changes from Version 1.0 to 2.0
	Corrections in the August 2013 document
	Changes from Version 2.0 to 2.5
	Changes from Version 2.5 to 2.6
	Changes from Version 2.6 to 2.7
	Changes from Version 2.7 to 3.0
	Changes from Version 3.0 to 3.1
	Changes from Version 3.1 to 3.2
	Changes from Version 3.2 to 3.3
	Changes from Version 3.3 to TR 24-1
	Topics Deferred For a Future Revision

	Directives
	Directive Format
	Conditional Compilation
	Internal Control Variables
	Modifying and Retrieving ICV Values

	Device-Specific Clauses
	Compute Constructs
	Parallel Construct
	Serial Construct
	Kernels Construct
	Compute Construct Restrictions
	Compute Construct Errors
	if clause
	self clause
	async clause
	wait clause
	num_gangs clause
	num_workers clause
	vector_length clause
	private clause
	firstprivate clause
	reduction clause
	default clause

	Data Environment
	Variables with Predetermined Data Attributes
	Variables with Implicitly Determined Data Attributes
	Data Regions and Data Lifetimes
	Data Structures with Pointers
	Data Construct
	Enter Data and Exit Data Directives
	Reference Counters
	Attachment Counter

	Data Clauses
	Data Specification in Data Clauses
	Data Clause Actions
	Data Clause Errors
	Data Clause Modifiers
	deviceptr clause
	present clause
	copy clause
	copyin clause
	copyout clause
	create clause
	no_create clause
	delete clause
	attach clause
	detach clause

	Host_Data Construct
	use_device clause
	if clause
	if_present clause

	Loop Construct
	collapse clause
	gang clause
	worker clause
	vector clause
	seq clause
	independent clause
	auto clause
	tile clause
	device_type clause
	private clause
	reduction clause

	Cache Directive
	Combined Constructs
	Atomic Construct
	Declare Directive
	device_resident clause
	create clause
	link clause

	Executable Directives
	Init Directive
	Shutdown Directive
	Set Directive
	Update Directive
	Wait Directive
	Enter Data Directive
	Exit Data Directive

	Procedure Calls in Compute Regions
	Routine Directive
	Global Data Access

	Asynchronous Behavior
	async clause
	wait clause
	Wait Directive

	Fortran Specific Behavior
	Optional Arguments
	Do Concurrent Construct

	Runtime Library
	Runtime Library Definitions
	Runtime Library Routines
	acc_get_num_devices
	acc_set_device_type
	acc_get_device_type
	acc_set_device_num
	acc_get_device_num
	acc_get_property
	acc_init
	acc_shutdown
	acc_async_test
	acc_wait
	acc_wait_async
	acc_wait_any
	acc_get_default_async
	acc_set_default_async
	acc_on_device
	acc_malloc
	acc_free
	acc_copyin and acc_create
	acc_copyout and acc_delete
	acc_update_device and acc_update_self
	acc_map_data
	acc_unmap_data
	acc_deviceptr
	acc_hostptr
	acc_is_present
	acc_memcpy_to_device
	acc_memcpy_from_device
	acc_memcpy_device
	acc_attach and acc_detach
	acc_memcpy_d2d

	Environment Variables
	ACC_DEVICE_TYPE
	ACC_DEVICE_NUM
	ACC_PROFLIB

	Profiling and Error Callback Interface
	Events
	Runtime Initialization and Shutdown
	Device Initialization and Shutdown
	Enter Data and Exit Data
	Data Allocation
	Data Construct
	Update Directive
	Compute Construct
	Enqueue Kernel Launch
	Enqueue Data Update (Upload and Download)
	Wait
	Error Event

	Callbacks Signature
	First Argument: General Information
	Second Argument: Event-Specific Information
	Third Argument: API-Specific Information

	Loading the Library
	Library Registration
	Statically-Linked Library Initialization
	Runtime Dynamic Library Loading
	Preloading with LD_PRELOAD
	Application-Controlled Initialization

	Registering Event Callbacks
	Event Registration and Unregistration
	Disabling and Enabling Callbacks

	Advanced Topics
	Dynamic Behavior
	OpenACC Events During Event Processing
	Multiple Host Threads

	Glossary
	Recommendations for Implementers
	Target Devices
	NVIDIA GPU Targets
	AMD GPU Targets
	Multicore Host CPU Target

	API Routines for Target Platforms
	NVIDIA CUDA Platform
	OpenCL Target Platform

	Recommended Options and Diagnostics
	C Pointer in Present clause
	Nonconforming Applications and Implementations
	Automatic Data Attributes
	Routine Directive with a Name

	Index

